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Motivation

- Mobile battery-powered devices (earbuds, smart watches, VR, drones, ...)
- Hard requirements: performance and energy efficiency
- Soft requirements: programmability and portability

- (Approx)HPVM: 
- Write one program to target many heterogeneously parallel architectures
- Offload computation to onboard coprocessors

- DHPVM:
- What about remote coprocessors on nearby edge hardware?

- 5G base stations; open laptops; public computing hubs?
- Earable Computing 

- Real time conversational agents? 
- Real time language translation / NLP (ALBERT, GoogleBERT)?
- Real time navigation?

- Availability of remote coprocessors constantly in flux
- Each edge device can have a different architecture!

- Need an IR; can’t compile the program in advance
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Related Work

- Remote code offloading
- VM-based offloading: extremely coarse-grained
- MAUI uses method-level offloading; uses CLR for portability
- SIMDOM: Dynamic binary translation with support for vector instructions

- Application placement
- e.g. Hadoop, Spark, mCloud, Wishbone...
- How do we decide which job to offload to whom?
- Many creative solutions - but there’s no single right answer

- Macroprogramming / multi-tier programming
- e.g. TinyDB, Pleiades, Kairos, Chor, ...
- “Local view”: Program each thread and each process independently
- “Global view”: Write a single program that compiles into per-process programs
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A battery-powered mobile device (the client) connects to nearby edge hardware (the workers)

The DHPVM runtime sends jobs to workers and waits for a response

Jobs should be pure functions to support mobility and fault-tolerance

Goal: Distributed Architecture
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Send Jobs

Get Results



Compilation Process
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main.cc

main.hpvm.ll

main.client.hpvm.ll main.worker.hpvm.ll

./client ./worker



Compilation Process
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main.cc

main.hpvm.ll

main.client.hpvm.ll main.worker.hpvm.ll

./client ./worker

HPVM-C File with REMOTE_TARGET Hints

...

void internal(…) {
  __hpvm__hint(REMOTE_TARGET);
  __hpvm__createNodeND(…, leaf, …);
  …
}

void root(…) {
  __hpvm__hint(CPU_TARGET);
  __hpvm__createNodeND(…, internal, …);
  …
}

int main() {
  …
  __hpvm__launch(root, args);
  …
}



Compilation Process
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main.cc

main.hpvm.ll

main.client.hpvm.ll main.worker.hpvm.ll

./client ./worker

LLVM Bitcode with Hierarchical HPVM DFG 

<host code>

hint(REMOTE_TARGET)

hint(REMOTE_TARGET)



Compilation Process
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main.cc

main.hpvm.ll

main.client.hpvm.ll main.worker.hpvm.ll

./client ./worker

LLVM Bitcode with Hierarchical HPVM DFG 

<host code>

Executed by Worker

Executed by Client



Compilation Process
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<host code>



Compilation Process
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<host code>
<host code> <dispatch>

main.client.hpvm.ll main.worker.hpvm.ll



Compilation Process
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<host code>
<host code> <dispatch>

Serialize args,
send request to 
worker; wait for 
response

main.client.hpvm.ll main.worker.hpvm.ll



main.client.hpvm.ll main.worker.hpvm.ll

Compilation Process
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<host code>
<host code> <dispatch>

Serialize args,
send request to 
worker; wait for 
response

Deserialize args, 
launch DFG, 
send back 
response



Compilation Process
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main.cc

main.hpvm.ll

main.client.hpvm.ll main.worker.hpvm.ll

./client ./worker

<host code> <dispatch>



Compilation Process
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main.cc

main.hpvm.ll

main.client.hpvm.ll main.worker.hpvm.ll

./client ./worker

<client exe> <worker exe>



● Evaluation HW
a. Local Machine: i5-3470 (No GPU)
b. Remote Server: E5-2680 (2x Titan Xp)

● Benchmark:
a. SGEMM from Parboil benchmark suite for two matrix sizes (128x160, 1024x1056) 

● Local Computation: Execution on local machine (compiled for TARGET=seq)
● Seq-Remote-Offloading: Distributed computing (compiled for TARGET=seq)

○ Client executable running on local machine 
○ Worker executable running on server machine 
○ ZMQ socket connection on port 5555 connected via ssh    

● HP-Remote-Offloading: Remote code offloading (compiled for 
TARGET=GPU)

○ True DHPVM, client, worker, zmq socket, ssh

Runtime
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Evaluation
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Conclusion

- DHPVM is potentially another “killer app” for the HPVM IR
- Our evaluation shows that:

- Seq-remote-offloading: 10% to 31% performance improvements
- HP-remote-offloading:  8.6x to 45.9x performance improvements
- CPU target is bottlenecked by compute cost 
- GPU target is bottlenecked by data movement cost
- Overall data movement cost is low  0.04 - 0.5 seconds for small and medium matrix respectively.

Future work:

- Support for streaming computation
- Concurrent offloading to multiple workers
- Customizable offloading policies

- Deciding which DFG nodes should be offloaded
- Deciding which worker should receive the work

- Shipping HPVM bitcode at runtime
- Distributed Earables Project (hopefully ASPLOS!)
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