
Hardware for Deep Learning
Muhammad Husnain Mubarik

3rd year PhD candidate @ ECE UIUC

Advised by: Prof. Rakesh Kumar

1

Goals of this Talk

• Many approaches for efficient processing of DNNs. Too many to
cover!

• We will focus on how to evaluate approaches for efficient processing
of DNNs
• What are the key questions to ask? When you read ML/HW papers.

• Specifically, we will discuss
• What are the key metrics that should be measured and compared?
• What are the challenges towards achieving these metrics?
• What are the design considerations and tradeoffs?

• We will focus on inference, but many concepts covered also apply to
training

2

Overview

• Deep Neural Networks Overview (Terminology)

• Key Metrics and Design Objectives

• Design Considerations
• CPU and GPU Platforms

• Specialized / Domain-Specific Hardware (ASICs)

• Algorithm (DNN Model) and Hardware Co-Design

• Other Platforms

• Optimizations – Quantization, Sparsity, Pruning

• Summary

3

What are Deep Neural Networks?

4

Weighted Sums

5

Popular Types of Layers in DNNs

• Fully Connected Layer
• Feed forward, dense layers
• Multilayer Perceptron (MLP)

• Convolutional Layer
• Feed forward, sparsely-connected w/ weight sharing
• Convolutional Neural Network (CNN)
• Typically used for images

• Recurrent Layer
• Feedback
• Recurrent Neural Network (RNN)
• Typically used for sequential data (e.g., speech, language)

• Attention Layer/Mechanism
• Attention (matrix multiply) + feed forward, fully connected
• Transformer [Vaswani, NeurIPS 2017]

6

Convolution in CNNs

H – Height of input fmap (activations)
W – Width of input fmap (activations)
C – Number of 2-D input fmaps /filters (channels)
R – Height of 2-D filter (weights)
S – Width of 2-D filter (weights)
M – Number of 2-D output fmaps (channels)
E – Height of output fmap (activations)
F – Width of output fmap (activations)
N – Number of input fmaps/output fmaps (batch size)

7

Convolution in CNNs

• Element-wise multiplication
• Partial sum accumulation
• Sliding window processing

8

Key Metrics: Much more than OPS/W!

• Accuracy
• Quality of result

• Throughput
• Analytics on high volume data
• Real-time performance (e.g., video at 30 fps)

• Latency
• For interactive applications (e.g., autonomous navigation)

• Energy and Power
• Embedded devices have limited battery capacity
• Data centers have a power ceiling due to cooling cost

• Hardware Cost
• $$$

• Flexibility
• Range of DNN models and tasks

• Scalability
• Scaling of performance with amount of resources

9

Key Design Objectives of DNN Processor

• Increase Throughput and Reduce Latency
• Reduce time per MAC

• Reduce critical path -> increase clock frequency

• Reduce instruction overhead

• Avoid unnecessary MACs (save cycles)

• Increase number of processing elements (PE) -> more MACs in parallel
• Increase area density of PE or area cost of system

• Increase PE utilization -> keep PEs busy
• Distribute workload to as many PEs as possible

• Balance the workload across PEs

• Sufficient memory bandwidth to deliver workload to PEs (reduce idle cycles)

10

Eyexam: Performance Evaluation Framework

12

Key Design Objectives of DNN Processor

• Reduce Energy and Power
Consumption
• Reduce data movement as it

dominates energy consumption
• Exploit data reuse

• Reduce energy per MAC
• Reduce switching activity and/or

capacitance
• Reduce instruction overhead

• Avoid unnecessary MACs

• Power consumption is limited by
heat dissipation, which limits the
maximum # of MACs in parallel (i.e.,
throughput)

13

Key Design Objectives of DNN Processor

• Flexibility
• Reduce overhead of supporting flexibility

• Maintain efficiency across wide range of DNN models
• Different layer shapes impact the amount of

• Required storage and compute

• Available data reuse that can be exploited

• Different precision across layers & data types (weight, activation, partial sum)

• Different degrees of sparsity (number of zeros in weights or activations)

• Types of DNN layers and computation beyond MACs (e.g., activation functions)

• Scalability
• How does performance (i.e., throughput, latency, energy, power) scales with increase

in amount of resources (e.g., number of PEs, amount of memory, etc.)

14

Specifications to Evaluate Metrics

• Accuracy
• Difficulty of dataset and/or task should be considered
• Difficult tasks typically require more complex DNN models

• Throughput
• Number of PEs with utilization (not just peak performance)
• Runtime for running specific DNN models

• Latency
• Batch size used in evaluation

• Energy and Power
• Power consumption for running specific DNN models
• Off-chip memory access (e.g., DRAM)

• Hardware Cost
• On-chip storage, # of PEs, chip area + process technology

• Flexibility
• Report performance across a wide range of DNN models
• Define range of DNN models that are efficiently supported

15

Comprehensive Coverage for Evaluation

• All metrics should be reported for fair evaluation of design tradeoffs

• Examples of what can happen if a certain metric is omitted:
• Without the accuracy given for a specific dataset and task, one could run a

simple DNN and claim low power, high throughput, and low cost – however,
the processor might not be usable for a meaningful task

• Without reporting the off-chip memory access, one could build a processor
with only MACs and claim low cost, high throughput, high accuracy, and low
chip power – however, when evaluating system power, the off-chip memory
access would be substantial

• Are results measured or simulated? On what test data?

16

Example Evaluation Process

• The evaluation process for whether a DNN processor is a viable
solution for a given application might go as follows:
• Accuracy determines if it can perform the given task

• Latency and throughput determine if it can run fast enough and in real-time

• Energy and power consumption will primarily dictate the form factor of the
device where the processing can operate

• Cost, which is primarily dictated by the chip area, determines how much one
would pay for this solution

• Flexibility determines the range of tasks it can support

17

CPUs and GPUs Targeting DNNs

• Use matrix multiplication libraries on CPUs and GPUs

18

Map DNN to a Matrix Multiplication

• Fully connected layer can be directly represented as matrix
multiplication

19

Map DNN to a Matrix Multiplication

• Convolutional layer can be converted to Toeplitz Matrix

20

CPU, GPU Libraries for Matrix Multiplication

• Implementation: Matrix Multiplication (GEMM)
• CPU: OpenBLAS, Intel MKL, etc

• GPU: cuBLAS, cuDNN, etc

• Library will note shape of the matrix multiply and select
implementation optimized for that shape

• Optimization usually involves proper tiling to memory hierarchy

21

Design Considerations for CPU and GPU

• Software (compiler)
• Reduce unnecessary MACs: Apply transforms
• Increase PE utilization: Schedule loop order and tile data to increase data reuse in

memory hierarchy

• Hardware
• Reduce time per MAC

• Increase speed of PEs
• Increase MACs per instruction using large aggregate instructions (e.g., SIMD, tensor core) ->

requires additional hardware
• Increase number of parallel MACs

• Increase number of PEs on chip -> area cost
• Support reduced precision in PEs

• Increase PE utilization
• Increase on-chip storage -> area cost
• External memory BW -> system cost

22

Specialized / Domain-Specific
Hardware

23

Properties We Can Leverage

• Operations exhibit high parallelism
• high throughput possible

• Memory Access is the Bottleneck

24

Properties We Can Leverage

• Operations exhibit high parallelism
• high throughput possible

• Input data reuse opportunities (e.g., up to 500x for AlexNet)
• exploit low-cost memory

25

Highly-Parallel Compute Paradigms

26

Advantages of Spatial Architecture

27

How to Map the Dataflow?

Goal: Increase reuse of input data
(weights and activations) and local partial
sums accumulation

28

Data Movement is Expensive

29

Weight Stationary (WS)

• Minimize weight read energy consumption
• maximize convolutional and filter reuse of weights

• Broadcast activations and accumulate partial sums spatially across
the PE array

• Examples: TPU [Jouppi, ISCA 2017], NVDLA

30

Output Stationary (OS)

• Minimize partial sum R/W energy consumption
• maximize local accumulation

• Broadcast/Multicast filter weights and reuse activations spatially
across the PE array

• Examples: [Moons, VLSI 2016], [Thinker, VLSI 2017]

31

Input Stationary (IS)

• Minimize activation read energy consumption
• maximize convolutional and fmap reuse of activations

• Unicast weights and accumulate partial sums spatially across the PE
array

• Example: [SCNN, ISCA 2017]

32

Row Stationary Dataflow

• Maximize row convolutional
reuse in RF
• Keep a filter row and fmap sliding

window in RF

• Maximize row psum
accumulation in RF

• Optimize for overall energy
efficiency instead for only a
certain data type

33

Eyeriss: Deep Neural Network Accelerator On

• Exploits data reuse for
100x reduction in
memory accesses from
global buffer and 1400x
reduction in memory
accesses from off-chip
DRAM

• Overall >10x energy
reduction compared to a
mobile GPU (Nvidia TK1)

34

Algorithm & Hardware Co-Design

• Co-design algorithm + hardware -> better than what each could achieve
alone

• Co-design approaches can be loosely grouped into two categories:
• Reduce size of operands for storage/compute (Reduced Precision)
• Reduce number of operations for storage/compute (Sparsity and Efficient Network

Architecture)

• Hardware support required to increase savings in latency and energy
• Ensure that overhead of hardware support does not exceed benefits

• Unlike previously discussed approaches, these approaches can affect
accuracy!
• Evaluate tradeoff between accuracy and other metrics

35

Optimizations – Reduced Precision

• Reduce data movement and
storage cost for inputs and
outputs of MAC
• Smaller memory -> lower energy

• Reduce cost of MAC
• Cost of multiply increases with bit

width (n) -> energy and area by
O(n2); delay by O(n)

36

Sparsity / Pruning

• Reduce number of MACs
• Anything multiplied by zero is zero -> avoid performing unnecessary MACs

• Reduce energy consumption and latency

• Reduce data movement
• If one of the inputs to MAC is zero, can avoid reading the other input

• Compress data by only sending non-zero values

• Example: AlexNet weight reduction by pruning
• CONV layers 2.7x; FC layers 9.9x

• Overall Reduction: Weights 9x, MACs 3x

37

Design Considerations for Sparsity

• Impact on accuracy
• Must consider difficulty of dataset, task, and DNN model

• e.g., AlexNet and VGG known to be over parameterized and thus easy to prune weights;
does method work on efficient DNN models?

• Does hardware cost exceed benefits?
• Need extra hardware to identify sparsity

• e.g., Additional logic to identify non-zeros and store non-zero locations

• Accounting for sparsity in both weights and activations is challenging
• Need to compute intersection of two data streams rather than find next non-zero in one

• Compressed data will be variable length
• Reduced flexibility in access order -> random access will have significant overhead

38

Design Considerations for Co-Design

• Impact on accuracy
• Consider quality of baseline (initial) DNN model, difficulty of task and dataset
• Sweep curve of accuracy versus latency/energy to see the full tradeoff

• Does hardware cost exceed benefits?
• Need extra hardware to support variable precision and shapes or to identify sparsity

• Time required to perform co-design
• e.g., Difficulty of tuning affected by

• Number of hyperparameters
• Uncertainty in relationship between hyperparameters and impact on performance

• How does the approach perform on different platforms?
• Is the approach a general method, or applicable on specific hardware?

39

Design Considerations for ASIC

• Increase PE utilization
• Flexible mapping and on-chip network for different DNN models -> requires

additional hardware

• Reduce data movement
• Custom memory hierarchy and dataflows that exploit data reuse
• Apply compression to exploit redundancy in data -> requires additional hardware

• Reduce time and energy per MAC
• Reduce precision -> if precision varies, requires additional hardware; impact on

accuracy

• Reduce unnecessary MACs
• Exploit sparsity -> requires additional hardware; impact on accuracy
• Exploit redundant operations -> requires additional hardware

40

Summary

• DNNs are a critical component in the AI revolution, delivering record
breaking accuracy on many important AI tasks for a wide range of
applications; however, it comes at the cost of high computational
complexity

• Efficient processing of DNNs is an important area of research with many
promising opportunities for innovation at various levels of hardware
design, including algorithm co-design

• When considering different DNN solutions it is important to evaluate with
the appropriate workload in term of both input and model, and recognize
that they are evolving rapidly

• It is important to consider a comprehensive set of metrics when evaluating
different DNN solutions: accuracy, throughput, latency, power, energy,
flexibility, scalability and cost

41

