Hardware for Deep Learning

Muhammad Husnain Mubarik
3'd year PhD candidate @ ECE UIUC
Advised by: Prof. Rakesh Kumar

Goals of this Talk

* Many approaches for efficient processing of DNNs. Too many to
cover!

* We will focus on how to evaluate approaches for efficient processing
of DNNs

* What are the key questions to ask? When you read ML/HW papers.

* Specifically, we will discuss
 What are the key metrics that should be measured and compared?
* What are the challenges towards achieving these metrics?
* What are the design considerations and tradeoffs?

* We will focus on inference, but many concepts covered also apply to
training

Overview

* Deep Neural Networks Overview (Terminology)
* Key Metrics and Design Objectives

* Design Considerations
* CPU and GPU Platforms
 Specialized / Domain-Specific Hardware (ASICs)
* Algorithm (DNN Model) and Hardware Co-Design
e Other Platforms

* Optimizations — Quantization, Sparsity, Pruning

* Summary

What are Deep Neural Networks?

High Level Features

Output:
“Volvo XC90”

Weighted Sums

Input Layer

Y, = Activation

Nonlinear (
1

Function

Hidden Layer

3

=1

1
W.xX.
x]

Sigmoid

—

y=1/(

1+e)

Rectified Linear Unit (ReLU)
1 l
0

y=max(0,x)

-1

-1 0 1

Image source: Caffe tutorial

Key operation is
multiply and accumulate (MAC)
Accounts for > 90% of computation

Popular Types of Layers in DNNs

Fully Connected Layer
* Feed forward, dense layers
e Multilayer Perceptron (MLP)

Convolutional Layer
* Feed forward, sparsely-connected w/ weight sharing
e Convolutional Neural Network (CNN)
e Typically used for images

Recurrent Layer
* Feedback
e Recurrent Neural Network (RNN)
» Typically used for sequential data (e.g., speech, language)

Attention Layer/Mechanism
» Attention (matrix multiply) + feed forward, fully connected
* Transformer [Vaswani, NeurlIPS 2017]

Convolution in CNNs

Input fmaps
Output fmaps

Filters
M7

. . . c’. P —
H — Height of input fmap (activations) ud T
W — Width of input fmap (activations) | E
C — Number of 2-D input fmaps /filters (channels) T 1 l 1
R — Height of 2-D filter (weights) —s o —F =
S — Width of 2-D filter (weights) . .
M — Number of 2-D output fmaps (channels) : .
E — Height of output fmap (activations) o’ M-
F — Width of output fmap (activations) = o

N — Number of input fmaps/output fmaps (batch size)

T
'fM

Convolution in CNNs

Element-wise multiplication
Partial sum accumulation
Sliding window processing

R

C

K
=

-

Filters

-

p

1
l

A
E S

e
-
",
o
g
.
.
.
-

ry

~,

A

']

Key Metrics: Much more than OPS/W!

* Accuracy MNIST CIFAR-10 ImageNet

 Quality of result J51771554) pEmm-mamzs SRSl e
. Throushout 117330177 Eetamari RS

o 122240307 Becoounnes 8

* Analytics on high volume data paiiorsrsy WEmuPwmEna o

* Real-time performance (e.g., video at 30 fps) 772806120/ [RNGEBESHRG SISO
* Latency

* For interactive applications (e.g., autonomous navigation) Embedded Device Dat§~Center
* Energy and Power s |

* Embedded devices have limited battery capacity

* Data centers have a power ceiling due to cooling cost
* Hardware Cost

RS Computer Speech
* Flexibility Vision

* Range of DNN models and tasks E—
* Scalability

e Scaling of performance with amount of resources

[Sze, CICC 2017]

Key Design Objectives of DNN Processor

* Increase Throughput and Reduce Latency
* Reduce time per MAC

e Reduce critical path -> increase clock frequency
* Reduce instruction overhead
* Avoid unnecessary MACs (save cycles)

* Increase number of processing elements (PE) -> more MACs in parallel
* Increase area density of PE or area cost of system

* Increase PE utilization -> keep PEs busy
* Distribute workload to as many PEs as possible
e Balance the workload across PEs
 Sufficient memory bandwidth to deliver workload to PEs (reduce idle cycles)

Evexam: Performance Evaluation Framework

MAC/cycle

A
Slope = BW to PEs

peak

performance —> Number of PEs (Theoretical Peak Performance)

Based on Roofline Model

‘ > MAC/data
} '

Bandwidth (BW) Compute o
Bounded Bounded [Williams, CACM 2009]

Key Design Objectives of DNN Processor

* Reduce Energy and Power
Consumption
 Reduce data movement as it
dominates energy consumption
* Exploit data reuse
* Reduce energy per MAC

* Reduce switching activity and/or
capacitance

e Reduce instruction overhead
* Avoid unnecessary MACs

* Power consumption is limited by
heat dissipation, which limits the

maximum # of MACs in parallel (i.e.,

throughput)

Operation: Energy
(PJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Multiply 0.2
32b Multiply 3.1
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

[Horowitz, ISSCC 2014]

Relative Energy Cost

1 10 102 103 104

13

Key Design Objectives of DNN Processor

* Flexibility
e Reduce overhead of supporting flexibility

* Maintain efficiency across wide range of DNN models

* Different layer shapes impact the amount of
* Required storage and compute
* Available data reuse that can be exploited

» Different precision across layers & data types (weight, activation, partial sum)
» Different degrees of sparsity (number of zeros in weights or activations)
* Types of DNN layers and computation beyond MACs (e.g., activation functions)

* Scalability

 How does performance (i.e., throughput, latency, energy, power) scales with increase
in amount of resources (e.g., number of PEs, amount of memory, etc.)

Specifications to Evaluate Metrics

Accuracy
» Difficulty of dataset and/or task should be considered
* Difficult tasks typically require more complex DNN models

Throughput
* Number of PEs with utilization (not just peak performance)
* Runtime for running specific DNN models

Latency
e Batch size used in evaluation

Energy and Power
* Power consumption for running specific DNN models
* Off-chip memory access (e.g., DRAM)

Hardware Cost
* On-chip storage, # of PEs, chip area + process technology

Flexibility
* Report performance across a wide range of DNN models
* Define range of DNN models that are efficiently supported

NOoku+rEbaY

N=V¥ANQAnw=\Neo

MNIST CIFAR-10 ImageNet

RRAND~=Jnw

EENER R VR RN

SLOPANQINN

FoNUSN e~

SQUL NP

SHET BARD- SRl R et
CEEDENwESs S

EEELONEREE A
EdcndeElde
JELEE=Inan ©

CRUMe NI wA

AN L= et o
NONONC LYY -~
HEt
LY [

3
[+
il
L}
a
=
b‘
»

memory
access

Computer Speech
Vision Recognition

[Sze, CICC 2017]

15

Comprehensive Coverage for Evaluation

* All metrics should be reported for fair evaluation of design tradeoffs

* Examples of what can happen if a certain metric is omitted:

* Without the accuracy given for a specific dataset and task, one could run a
simple DNN and claim low power, high throughput, and low cost — however,
the processor might not be usable for a meaningful task

* Without reporting the off-chip memory access, one could build a processor
with only MACs and claim low cost, high throughput, high accuracy, and low
chip power — however, when evaluating system power, the off-chip memory
access would be substantial

e Are results measured or simulated? On what test data?

Example Evaluation Process

* The evaluation process for whether a DNN processor is a viable
solution for a given application might go as follows:
* Accuracy determines if it can perform the given task
e Latency and throughput determine if it can run fast enough and in real-time

* Energy and power consumption will primarily dictate the form factor of the
device where the processing can operate

* Cost, which is primarily dictated by the chip area, determines how much one
would pay for this solution

* Flexibility determines the range of tasks it can support

CPUs and GPUs Targeting DNNs

* Use matrix multiplication libraries on CPUs and GPUs

Intel Xeon (Cascade Lake) Nvidia Tesla (Volta) @ AMD Radeon (Instinct)

2nd Gen

Intel® Xeon®
Scalable
Processor

18

Map DNN to a Matrix Multiplication

* Fully connected layer can be directly represented as matrix
multiplication

filters input fmaps output fmaps
Filters Input fmaps Output fmaps
«— CHW —— N N
[]
M oM

M=
1

. ‘ |IN

— —w— T Note: Matrix multiplication also heavily used

In fully connected layer, filter size (R, S) same as input size (H, W) by recurrent and attention Iayers 19

Map DNN to a Matrix Multiplication

* Convolutional layer can be converted to Toeplitz Matrix

Filter Input Fmap Output Fmap Filter Input Fmap Output Fmap
x = x =
3

Convolution Matrix Multiply (by Toeplitz Matrix)
Data is repeated

20

CPU, GPU Libraries for Matrix Multiplication

* Implementation: Matrix Multiplication (GEMM)
 CPU: OpenBLAS, Intel MKL, etc
* GPU: cuBLAS, cuDNN, etc

* Library will note shape of the matrix multiply and select
implementation optimized for that shape

* Optimization usually involves proper tiling to memory hierarchy

Design Considerations for CPU and GPU

e Software (compiler)
* Reduce unnecessary MACs: Apply transforms

* Increase PE utilization: Schedule loop order and tile data to increase data reuse in
memory hierarchy

* Hardware
* Reduce time per MAC

* Increase speed of PEs

* Increase MACs per instruction using large aggregate instructions (e.g., SIMD, tensor core) ->
requires additional hardware

* Increase number of parallel MACs
* Increase number of PEs on chip -> area cost
e Support reduced precision in PEs
* Increase PE utilization
* Increase on-chip storage -> area cost
e External memory BW -> system cost

Specialized / Domain-Specific
Hardware

Properties We Can Leverage

* Operations exhibit high parallelism
* high throughput possible

* Memory Access is the Bottleneck

Memory Read MAC" Memory Write

filter weight: ALU]
fmap act : ||

% § . updated .
arual sum § A\l . partial sum

200x 1x * multiply-and-accumulate

Worst Case: all memory R/W are DRAM accesses
Example: AlexNet has 724M MACs > 2896M DRAM accesses required

Properties We Can Leverage

* Operations exhibit high parallelism
* high throughput possible

* exploit low-cost memory

Input Fmaps

. Input Fmap Filters '

Iillter input Fmap Filter L7

. o R o 1 s
|_ ﬁ/ﬁ '. j
. 2 2
Convolutional Reuse

(Activations, Weights) Fmap Reuse Filter Reuse
CONV layers only (Activations) (Weights)
(sliding window) CONV and FC layers CONV and FC layers

(batch size > 1)

Input data reuse opportunities (e.g., up to 500x for AlexNet)

25

Highly-Parallel Compute Paradigms

Temporal Architecture Spatial Architecture
(SIMD/SIMT) (Dataflow Processing)

Memory Hierarchy

Memory Hierarchy

Register File

ALU ALU ALU ALU

HE A i

ALU ALU ALU ALU

I | Rt | Iy

ALU ALU ALU ALU

Lo i

ALU ALU ALU ALU

26

Advantages of Spatial Architecture

Efficient Data Reuse
Distributed local storage (RF)

Inter-PE Communication
Sharing among regions of PEs

Processing
Element (PE)

0.5-1.0kB Reg File

Control

Spatial Architecture
(Dataflow Processing)

Memory Hierarchy

27

How to Map the Dataflow?

Spatial Architecture
(Dataflow Processing)

CNN Convolution

‘, Memory Hierarchy

activations

weights -
partial
sums

Goal: Increase reuse of input data
(weights and activations) and local partial
sums accumulation

Data Movement is Expensive

P

P

ElPE
E

0.5-1.0kB §;

NoC: 200 - 1000 PEs | PE

ALU

ALU

ALU

ALU

ALU

Specialized hardware with small (< 1kB)
low cost memory near compute

fetch data to run
a MAC here

Normalized Energy Cost’

1% (Reference)

1x

Farther and larger memories
consume more power

Maximize data reuse at low
cost levels of memory hierarchy

200x

Weight Stationary (WS)

* Minimize weight read energy consumption
* maximize convolutional and filter reuse of weights

* Broadcast activations and accumulate partial sums spatially across
the PE array

* Examples: TPU [Jouppi, ISCA 2017], NVDLA

Global Buffer

30

Output Stationary (OS)

* Minimize partial sum R/W energy consumption
* maximize local accumulation

* Broadcast/Multicast filter weights and reuse activations spatially
across the PE array

* Examples: [Moons, VLS| 2016], [Thinker, VLSI 2017]

Global Buffer

31

Input Stationary (IS)

* Minimize activation read energy consumption
* maximize convolutional and fmap reuse of activations

* Unicast weights and accumulate partial sums spatially across the PE
array

* Example: [SCNN, ISCA 2017]

Global Buffer

Weight l .
H : ':7 : X :: .. : £ H
10 |

Act

Psum

PE

32

Row Stationary Dataflow

* Maximize row convolutional GEAl Giad e
reuse in RF m*Tm.PE1 m*T-mP“ m}.mpm
* Keep a filter row and fmap sliding T ..,) e I -
window in RF o2y mowz | | Rowa X wows | | Rewa § SoRowa
* Maximize row psum | oF 3 1 bE 6 I PE 9
accumulation in RF Row3] Row3 |[M/Row3l Row4 |M/Row3] Row5
* Optimize for overall energy .*ﬁ -® E+E-m B

efficiency instead for only a
certain data type

33

Everiss: Deep Neural Network Accelerator On

* Exploits data reuse for

i] Link Clock! Core Clock DCNN Accelerator
100x reduction in L |y 412 PE Array Il —
i ilter Filt : é;ég
memory accesses from . Y gg = =
1 E —
global buffer and 1400x g ecomy ey " [N £l EL
ouft ; =Ee-n §|
reduction in memory , o & | ==
accesses from off-chip i cLLE \ ‘
DRAM [Chen, ISSCC 2016]

e Overall >10x energy
reduction compared to a
mobile GPU (Nvidia TK1)

34

Algorithm & Hardware Co-Design

e Co-design algorithm + hardware -> better than what each could achieve
alone

* Co-design approaches can be loosely grouped into two categories:
* Reduce size of operands for storage/compute (Reduced Precision)

* Reduce number of operations for storage/compute (Sparsity and Efficient Network
Architecture)

* Hardware support required to increase savings in latency and energy
* Ensure that overhead of hardware support does not exceed benefits

* Unlike previously discussed approaches, these approaches can affect
accuracy!

e Evaluate tradeoff between accuracy and other metrics

Optimizations — Reduced Precision

* Reduce data movement and
storage cost for inputs and
outputs of MAC

* Smaller memory -> lower energy

e Reduce cost of MAC

e Cost of multiply increases with bit
width (n) -> energy and area by
O(n2); delay by O(n)

Operation: Energy
(P3)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Relative Energy Cost

e

1 10 102 10% 10¢

Area
(um2)

36

67

137

1360

4184

282

3495

1640

7700

N/A

N/A

Relative Area Cost

[Horowitz, ISSCC 2014]

o
N
R

103

36

Sparsity / Pruning

* Reduce number of MACs
* Anything multiplied by zero is zero -> avoid performing unnecessary MACs
* Reduce energy consumption and latency

* Reduce data movement
* |f one of the inputs to MAC is zero, can avoid reading the other input
 Compress data by only sending non-zero values

 Example: AlexNet weight reduction by pruning
* CONV layers 2.7x; FC layers 9.9x
* Overall Reduction: Weights 9x, MACs 3x

Design Considerations for Sparsity

* [mpact on accuracy

* Must consider difficulty of dataset, task, and DNN model

e e.g., AlexNet and VGG known to be over parameterized and thus easy to prune weights;
does method work on efficient DNN models?

* Does hardware cost exceed benefits?
* Need extra hardware to identify sparsity
* e.g., Additional logic to identify non-zeros and store non-zero locations

* Accounting for sparsity in both weights and activations is challenging
* Need to compute intersection of two data streams rather than find next non-zero in one

* Compressed data will be variable length
* Reduced flexibility in access order -> random access will have significant overhead

Design Considerations for Co-Design

* Impact on accuracy

* Consider quality of baseline (initial) DNN model, difficulty of task and dataset
* Sweep curve of accuracy versus latency/energy to see the full tradeoff

* Does hardware cost exceed benefits?
* Need extra hardware to support variable precision and shapes or to identify sparsity

* Time required to perform co-design
e e.g., Difficulty of tuning affected by
* Number of hyperparameters
* Uncertainty in relationship between hyperparameters and impact on performance
* How does the approach perform on different platforms?
* |s the approach a general method, or applicable on specific hardware?

Design Considerations for ASIC

* Increase PE utilization
* Flexible mapping and on-chip network for different DNN models -> requires
additional hardware
* Reduce data movement
e Custom memory hierarchy and dataflows that exploit data reuse
* Apply compression to exploit redundancy in data -> requires additional hardware

* Reduce time and energy per MAC
* Reduce precision -> if precision varies, requires additional hardware; impact on
accuracy
* Reduce unnecessary MACs
* Exploit sparsity -> requires additional hardware; impact on accuracy
e Exploit redundant operations -> requires additional hardware

summary

* DNNs are a critical component in the Al revolution, delivering record
breaking accuracy on many important Al tasks for a wide range of
applications; however, it comes at the cost of high computational
complexity

* Efficient processing of DNNs is an important area of research with many
promising opportunities for innovation at various levels of hardware
design, including algorithm co-design

* When considering different DNN solutions it is important to evaluate with
the appropriate workload in term of both input and model, and recognize
that they are evolving rapidly

* It is important to consider a comprehensive set of metrics when evaluating
different DNN solutions: accuracy, throughput, latency, power, energy,
flexibility, scalability and cost

41

