Hardware for Deep Learning

Muhammad Husnain Mubarik

3rd year PhD candidate @ ECE UIUC

Advised by: Prof. Rakesh Kumar

Goals of this Talk

- Many approaches for efficient processing of DNNs. Too many to cover!
- We will focus on how to evaluate approaches for efficient processing of DNNs
 - What are the key questions to ask? When you read ML/HW papers.
- Specifically, we will discuss
 - What are the **key metrics** that should be measured and compared?
 - What are the **challenges** towards achieving these metrics?
 - What are the **design considerations** and tradeoffs?
- We will focus on inference, but many concepts covered also apply to training

Overview

- Deep Neural Networks Overview (Terminology)
- Key Metrics and Design Objectives
- Design Considerations
 - CPU and GPU Platforms
 - Specialized / Domain-Specific Hardware (ASICs)
 - Algorithm (DNN Model) and Hardware Co-Design
 - Other Platforms
- Optimizations Quantization, Sparsity, Pruning
- Summary

What are Deep Neural Networks?

Weighted Sums

Popular Types of Layers in DNNs

- Fully Connected Layer
 - Feed forward, dense layers
 - Multilayer Perceptron (MLP)
- Convolutional Layer
 - Feed forward, sparsely-connected w/ weight sharing
 - Convolutional Neural Network (CNN)
 - Typically used for images
- Recurrent Layer
 - Feedback
 - Recurrent Neural Network (RNN)
 - Typically used for sequential data (e.g., speech, language)
- Attention Layer/Mechanism
 - Attention (matrix multiply) + feed forward, fully connected
 - Transformer [Vaswani, NeurIPS 2017]

Convolution in CNNs

- W Width of input fmap (activations)
- C Number of 2-D input fmaps /filters (channels)
- R Height of 2-D filter (weights)
- S Width of 2-D filter (weights)
- M Number of 2-D output fmaps (channels)
- E Height of output fmap (activations)
- F Width of output fmap (activations)
- N Number of input fmaps/output fmaps (batch size)

Output fmaps

Convolution in CNNs

- Element-wise multiplication
- Partial sum accumulation
- Sliding window processing

Key Metrics: Much more than OPS/W!

- Accuracy
 - Quality of result
- Throughput
 - Analytics on high volume data
 - Real-time performance (e.g., video at 30 fps)
- Latency
 - For interactive applications (e.g., autonomous navigation)
- Energy and Power
 - Embedded devices have limited battery capacity
 - Data centers have a power ceiling due to cooling cost
- Hardware Cost
 - \$\$\$
- Flexibility
 - Range of DNN models and tasks
- Scalability
 - Scaling of performance with amount of resources

Embedded Device

Data Center

Computer Vision Speech Recognition

[Sze, CICC 2017]

Key Design Objectives of DNN Processor

Increase Throughput and Reduce Latency

- Reduce time per MAC
 - Reduce critical path -> increase clock frequency
 - Reduce instruction overhead
- Avoid unnecessary MACs (save cycles)
- Increase number of processing elements (PE) -> more MACs in parallel
 - Increase area density of PE or area cost of system
- Increase PE utilization -> keep PEs busy
 - Distribute workload to as many PEs as possible
 - Balance the workload across PEs
 - Sufficient memory bandwidth to deliver workload to PEs (reduce idle cycles)

Eyexam: Performance Evaluation Framework

Key Design Objectives of DNN Processor

- Reduce Energy and Power Consumption
 - Reduce data movement as it dominates energy consumption
 - Exploit data reuse
 - Reduce energy per MAC
 - Reduce switching activity and/or capacitance
 - Reduce instruction overhead
 - Avoid unnecessary MACs
- Power consumption is limited by heat dissipation, which limits the maximum # of MACs in parallel (i.e., throughput)

Operation:	Energy (p])	Relative Energy Cost
8b Add	0.03	
16b Add	0.05	
32b Add	0.1	
16b FP Add	0.4	
32b FP Add	0.9	70-
8b Multiply	0.2	
32b Multiply	3.1	
16b FP Multiply	1.1	
32b FP Multiply	3.7	
32b SRAM Read (8KB)	5	
32b DRAM Read	640	
[Horowitz, ISSCC 2014]		1 10 10 ² 10 ³ 10 ⁴

Key Design Objectives of DNN Processor

- Flexibility
 - Reduce overhead of supporting flexibility
 - Maintain efficiency across wide range of DNN models
 - Different layer shapes impact the amount of
 - Required storage and compute
 - Available data reuse that can be exploited
 - Different precision across layers & data types (weight, activation, partial sum)
 - Different degrees of sparsity (number of zeros in weights or activations)
 - Types of DNN layers and computation beyond MACs (e.g., activation functions)
- Scalability
 - How does performance (i.e., throughput, latency, energy, power) scales with increase in amount of resources (e.g., number of PEs, amount of memory, etc.)

Specifications to Evaluate Metrics

Accuracy

- Difficulty of dataset and/or task should be considered
- Difficult tasks typically require more complex DNN models
- Throughput
 - Number of PEs with utilization (not just peak performance)
 - Runtime for running specific DNN models
- Latency
 - Batch size used in evaluation
- Energy and Power
 - Power consumption for running specific DNN models
 - Off-chip memory access (e.g., DRAM)
- Hardware Cost
 - On-chip storage, # of PEs, chip area + process technology
- Flexibility
 - Report performance across a wide range of DNN models
 - Define range of DNN models that are efficiently supported

[**Sze**, *CICC* 2017]

Comprehensive Coverage for Evaluation

- All metrics should be reported for fair evaluation of design tradeoffs
- Examples of what can happen if a certain metric is omitted:
 - Without the accuracy given for a specific dataset and task, one could run a simple DNN and claim low power, high throughput, and low cost – however, the processor might not be usable for a meaningful task
 - Without reporting the off-chip memory access, one could build a processor with only MACs and claim low cost, high throughput, high accuracy, and low chip power – however, when evaluating system power, the off-chip memory access would be substantial
- Are results measured or simulated? On what test data?

Example Evaluation Process

- The evaluation process for whether a DNN processor is a viable solution for a given application might go as follows:
 - Accuracy determines if it can perform the given task
 - Latency and throughput determine if it can run fast enough and in real-time
 - Energy and power consumption will primarily dictate the form factor of the device where the processing can operate
 - Cost, which is primarily dictated by the chip area, determines how much one would pay for this solution
 - Flexibility determines the range of tasks it can support

CPUs and GPUs Targeting DNNs

• Use matrix multiplication libraries on CPUs and GPUs

Intel Xeon (Cascade Lake) Nvidia Tesla (Volta) AMD Radeon (Instinct)

Map DNN to a Matrix Multiplication

• Fully connected layer can be directly represented as matrix multiplication

In fully connected layer, filter size (R, S) same as input size (H, W)

19

Map DNN to a Matrix Multiplication

• Convolutional layer can be converted to Toeplitz Matrix

Convolution

Matrix Multiply (by Toeplitz Matrix) Data is repeated

CPU, GPU Libraries for Matrix Multiplication

- Implementation: Matrix Multiplication (GEMM)
 - CPU: OpenBLAS, Intel MKL, etc
 - GPU: cuBLAS, cuDNN, etc
- Library will note shape of the matrix multiply and select implementation optimized for that shape
- Optimization usually involves proper tiling to memory hierarchy

Design Considerations for CPU and GPU

- Software (compiler)
 - Reduce unnecessary MACs: Apply transforms
 - Increase PE utilization: Schedule loop order and tile data to increase data reuse in memory hierarchy
- Hardware
 - Reduce time per MAC
 - Increase speed of PEs
 - Increase MACs per instruction using large aggregate instructions (e.g., SIMD, tensor core) ->
 requires additional hardware
 - Increase number of parallel MACs
 - Increase number of PEs on chip -> area cost
 - Support reduced precision in PEs
 - Increase PE utilization
 - Increase on-chip storage -> area cost
 - External memory BW -> system cost

Specialized / Domain-Specific Hardware

Properties We Can Leverage

- Operations exhibit high parallelism
 - high throughput possible
- Memory Access is the Bottleneck

<u>Worst Case</u>: all memory R/W are **DRAM** accesses Example: AlexNet has **724M** MACs → **2896M** DRAM accesses required

Properties We Can Leverage

- Operations exhibit high parallelism
 - high throughput possible
- Input data reuse opportunities (e.g., up to 500x for AlexNet)
 - exploit low-cost memory

Highly-Parallel Compute Paradigms

Temporal Architecture (SIMD/SIMT)

Spatial Architecture (Dataflow Processing)

Advantages of Spatial Architecture

How to Map the Dataflow?

Goal: Increase reuse of input data (weights and activations) and local partial sums accumulation

Spatial Architecture (Dataflow Processing)

Data Movement is Expensive

Specialized hardware with small (< 1kB) low cost memory near compute

fetch data to run a MAC here

consume more power Maximize data reuse at low

cost levels of memory hierarchy

Weight Stationary (WS)

- Minimize weight read energy consumption
 - maximize convolutional and filter reuse of weights
- Broadcast activations and accumulate partial sums spatially across the PE array
- Examples: TPU [Jouppi, ISCA 2017], NVDLA

Output Stationary (OS)

- Minimize partial sum R/W energy consumption
 - maximize local accumulation
- Broadcast/Multicast filter weights and reuse activations spatially across the PE array
- Examples: [Moons, VLSI 2016], [Thinker, VLSI 2017]

Input Stationary (IS)

- Minimize activation read energy consumption
 - maximize convolutional and fmap reuse of activations
- Unicast weights and accumulate partial sums spatially across the PE array
- Example: [SCNN, ISCA 2017]

Row Stationary Dataflow

- Maximize row convolutional reuse in RF
 - Keep a filter row and fmap sliding window in RF
- Maximize row psum accumulation in RF
- Optimize for overall energy efficiency instead for only a certain data type

Eyeriss: Deep Neural Network Accelerator On

 Exploits data reuse for 100x reduction in memory accesses from global buffer and 1400x reduction in memory accesses from off-chip DRAM

 Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1)

Algorithm & Hardware Co-Design

- Co-design algorithm + hardware -> better than what each could achieve alone
- Co-design approaches can be loosely grouped into two categories:
 - Reduce size of operands for storage/compute (Reduced Precision)
 - Reduce number of operations for storage/compute (Sparsity and Efficient Network Architecture)
- Hardware support required to increase savings in latency and energy
 - Ensure that overhead of hardware support does not exceed benefits
- Unlike previously discussed approaches, these approaches can affect accuracy!
 - Evaluate tradeoff between accuracy and other metrics

Optimizations – Reduced Precision

- Reduce data movement and storage cost for inputs and outputs of MAC
 - Smaller memory -> lower energy
- Reduce cost of MAC
 - Cost of multiply increases with bit width (n) -> energy and area by O(n2); delay by O(n)

Sparsity / Pruning

- Reduce number of MACs
 - Anything multiplied by zero is zero -> avoid performing unnecessary MACs
 - Reduce energy consumption and latency
- Reduce data movement
 - If one of the inputs to MAC is zero, can avoid reading the other input
 - Compress data by only sending non-zero values
- Example: AlexNet weight reduction by pruning
 - CONV layers 2.7x; FC layers 9.9x
 - Overall Reduction: Weights 9x, MACs 3x

Design Considerations for Sparsity

- Impact on accuracy
 - Must consider difficulty of dataset, task, and DNN model
 - e.g., AlexNet and VGG known to be over parameterized and thus easy to prune weights; does method work on efficient DNN models?
- Does hardware cost exceed benefits?
 - Need extra hardware to identify sparsity
 - e.g., Additional logic to identify non-zeros and store non-zero locations
 - Accounting for sparsity in both weights and activations is challenging
 - Need to compute intersection of two data streams rather than find next non-zero in one
 - Compressed data will be variable length
 - Reduced flexibility in access order -> random access will have significant overhead

Design Considerations for Co-Design

- Impact on accuracy
 - Consider quality of baseline (initial) DNN model, difficulty of task and dataset
 - Sweep curve of accuracy versus latency/energy to see the full tradeoff
- Does hardware cost exceed benefits?
 - Need extra hardware to support variable precision and shapes or to identify sparsity
- Time required to perform co-design
 - e.g., Difficulty of tuning affected by
 - Number of hyperparameters
 - Uncertainty in relationship between hyperparameters and impact on performance
- How does the approach perform on different platforms?
 - Is the approach a general method, or applicable on specific hardware?

Design Considerations for ASIC

- Increase PE utilization
 - Flexible mapping and on-chip network for different DNN models -> requires additional hardware
- Reduce data movement
 - Custom memory hierarchy and dataflows that exploit data reuse
 - Apply compression to exploit redundancy in data -> requires additional hardware
- Reduce time and energy per MAC
 - Reduce precision -> if precision varies, requires additional hardware; impact on accuracy
- Reduce unnecessary MACs
 - Exploit sparsity -> requires additional hardware; impact on accuracy
 - Exploit redundant operations -> requires additional hardware

Summary

- DNNs are a critical component in the AI revolution, delivering record breaking accuracy on many important AI tasks for a wide range of applications; however, it comes at the cost of high computational complexity
- Efficient processing of DNNs is an important area of research with many promising opportunities for innovation at various levels of hardware design, including algorithm co-design
- When considering different DNN solutions it is important to evaluate with the appropriate workload in term of both input and model, and recognize that they are evolving rapidly
- It is important to consider a comprehensive set of metrics when evaluating different DNN solutions: accuracy, throughput, latency, power, energy, flexibility, scalability and cost