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Goals of this Talk 

• Many approaches for efficient processing of DNNs. Too many to 
cover! 

• We will focus on how to evaluate approaches for efficient processing 
of DNNs 
• What are the key questions to ask? When you read ML/HW papers.

• Specifically, we will discuss 
• What are the key metrics that should be measured and compared? 
• What are the challenges towards achieving these metrics? 
• What are the design considerations and tradeoffs? 

• We will focus on inference, but many concepts covered also apply to 
training
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Overview

• Deep Neural Networks Overview (Terminology) 

• Key Metrics and Design Objectives 

• Design Considerations 
• CPU and GPU Platforms 

• Specialized / Domain-Specific Hardware (ASICs) 

• Algorithm (DNN Model) and Hardware Co-Design

• Other Platforms 

• Optimizations – Quantization, Sparsity, Pruning 

• Summary
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What are Deep Neural Networks? 
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Weighted Sums 
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Popular Types of Layers in DNNs 

• Fully Connected Layer 
• Feed forward, dense layers 
• Multilayer Perceptron (MLP) 

• Convolutional Layer 
• Feed forward, sparsely-connected w/ weight sharing 
• Convolutional Neural Network (CNN) 
• Typically used for images 

• Recurrent Layer 
• Feedback 
• Recurrent Neural Network (RNN) 
• Typically used for sequential data (e.g., speech, language) 

• Attention Layer/Mechanism 
• Attention (matrix multiply) + feed forward, fully connected 
• Transformer [Vaswani, NeurIPS 2017]
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Convolution in CNNs 

H – Height of input fmap (activations) 
W – Width of input fmap (activations) 
C – Number of 2-D input fmaps /filters (channels) 
R – Height of 2-D filter (weights) 
S – Width of 2-D filter (weights) 
M – Number of 2-D output fmaps (channels) 
E – Height of output fmap (activations) 
F – Width of output fmap (activations) 
N – Number of input fmaps/output fmaps (batch size)
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Convolution in CNNs 

• Element-wise multiplication
• Partial sum accumulation
• Sliding window processing 
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Key Metrics: Much more than OPS/W! 

• Accuracy 
• Quality of result 

• Throughput 
• Analytics on high volume data 
• Real-time performance (e.g., video at 30 fps) 

• Latency 
• For interactive applications (e.g., autonomous navigation) 

• Energy and Power 
• Embedded devices have limited battery capacity 
• Data centers have a power ceiling due to cooling cost 

• Hardware Cost 
• $$$ 

• Flexibility 
• Range of DNN models and tasks 

• Scalability 
• Scaling of performance with amount of resources
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Key Design Objectives of DNN Processor 

• Increase Throughput and Reduce Latency 
• Reduce time per MAC 

• Reduce critical path -> increase clock frequency 

• Reduce instruction overhead 

• Avoid unnecessary MACs (save cycles) 

• Increase number of processing elements (PE) -> more MACs in parallel
• Increase area density of PE or area cost of system 

• Increase PE utilization -> keep PEs busy 
• Distribute workload to as many PEs as possible 

• Balance the workload across PEs 

• Sufficient memory bandwidth to deliver workload to PEs (reduce idle cycles) 

10



Eyexam: Performance Evaluation Framework 
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Key Design Objectives of DNN Processor 

• Reduce Energy and Power 
Consumption 
• Reduce data movement as it 

dominates energy consumption 
• Exploit data reuse 

• Reduce energy per MAC 
• Reduce switching activity and/or 

capacitance 
• Reduce instruction overhead 

• Avoid unnecessary MACs 

• Power consumption is limited by 
heat dissipation, which limits the 
maximum # of MACs in parallel (i.e., 
throughput)
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Key Design Objectives of DNN Processor 

• Flexibility 
• Reduce overhead of supporting flexibility 

• Maintain efficiency across wide range of DNN models 
• Different layer shapes impact the amount of 

• Required storage and compute 

• Available data reuse that can be exploited 

• Different precision across layers & data types (weight, activation, partial sum) 

• Different degrees of sparsity (number of zeros in weights or activations) 

• Types of DNN layers and computation beyond MACs (e.g., activation functions) 

• Scalability 
• How does performance (i.e., throughput, latency, energy, power) scales with increase 

in amount of resources (e.g., number of PEs, amount of memory, etc.)
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Specifications to Evaluate Metrics 

• Accuracy 
• Difficulty of dataset and/or task should be considered 
• Difficult tasks typically require more complex DNN models 

• Throughput 
• Number of PEs with utilization (not just peak performance) 
• Runtime for running specific DNN models 

• Latency 
• Batch size used in evaluation 

• Energy and Power 
• Power consumption for running specific DNN models 
• Off-chip memory access (e.g., DRAM) 

• Hardware Cost 
• On-chip storage, # of PEs, chip area + process technology 

• Flexibility 
• Report performance across a wide range of DNN models 
• Define range of DNN models that are efficiently supported
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Comprehensive Coverage for Evaluation 

• All metrics should be reported for fair evaluation of design tradeoffs

• Examples of what can happen if a certain metric is omitted: 
• Without the accuracy given for a specific dataset and task, one could run a 

simple DNN and claim low power, high throughput, and low cost – however, 
the processor might not be usable for a meaningful task 

• Without reporting the off-chip memory access, one could build a processor 
with only MACs and claim low cost, high throughput, high accuracy, and low 
chip power – however, when evaluating system power, the off-chip memory 
access would be substantial 

• Are results measured or simulated? On what test data?
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Example Evaluation Process 

• The evaluation process for whether a DNN processor is a viable 
solution for a given application might go as follows: 
• Accuracy determines if it can perform the given task 

• Latency and throughput determine if it can run fast enough and in real-time

• Energy and power consumption will primarily dictate the form factor of the 
device where the processing can operate 

• Cost, which is primarily dictated by the chip area, determines how much one 
would pay for this solution 

• Flexibility determines the range of tasks it can support
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CPUs and GPUs Targeting DNNs 

• Use matrix multiplication libraries on CPUs and GPUs 
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Map DNN to a Matrix Multiplication 

• Fully connected layer can be directly represented as matrix 
multiplication 
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Map DNN to a Matrix Multiplication 

• Convolutional layer can be converted to Toeplitz Matrix 
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CPU, GPU Libraries for Matrix Multiplication 

• Implementation: Matrix Multiplication (GEMM) 
• CPU: OpenBLAS, Intel MKL, etc

• GPU: cuBLAS, cuDNN, etc

• Library will note shape of the matrix multiply and select 
implementation optimized for that shape 

• Optimization usually involves proper tiling to memory hierarchy
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Design Considerations for CPU and GPU 

• Software (compiler) 
• Reduce unnecessary MACs: Apply transforms 
• Increase PE utilization: Schedule loop order and tile data to increase data reuse in 

memory hierarchy 

• Hardware 
• Reduce time per MAC 

• Increase speed of PEs 
• Increase MACs per instruction using large aggregate instructions (e.g., SIMD, tensor core) -> 

requires additional hardware 
• Increase number of parallel MACs 

• Increase number of PEs on chip -> area cost 
• Support reduced precision in PEs 

• Increase PE utilization 
• Increase on-chip storage -> area cost 
• External memory BW -> system cost 
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Specialized / Domain-Specific
Hardware
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Properties We Can Leverage 

• Operations exhibit high parallelism 
• high throughput possible 

• Memory Access is the Bottleneck
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Properties We Can Leverage 

• Operations exhibit high parallelism 
• high throughput possible 

• Input data reuse opportunities (e.g., up to 500x for AlexNet) 
• exploit low-cost memory
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Highly-Parallel Compute Paradigms  
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Advantages of Spatial Architecture 
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How to Map the Dataflow? 

Goal: Increase reuse of input data 
(weights and activations) and local partial 
sums accumulation
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Data Movement is Expensive 
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Weight Stationary (WS) 

• Minimize weight read energy consumption 
• maximize convolutional and filter reuse of weights 

• Broadcast activations and accumulate partial sums spatially across 
the PE array 

• Examples: TPU [Jouppi, ISCA 2017], NVDLA
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Output Stationary (OS) 

• Minimize partial sum R/W energy consumption 
• maximize local accumulation 

• Broadcast/Multicast filter weights and reuse activations spatially 
across the PE array 

• Examples: [Moons, VLSI 2016], [Thinker, VLSI 2017]

31



Input Stationary (IS) 

• Minimize activation read energy consumption 
• maximize convolutional and fmap reuse of activations 

• Unicast weights and accumulate partial sums spatially across the PE 
array 

• Example: [SCNN, ISCA 2017]
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Row Stationary Dataflow 

• Maximize row convolutional 
reuse in RF
• Keep a filter row and fmap sliding 

window in RF 

• Maximize row psum
accumulation in RF 

• Optimize for overall energy 
efficiency instead for only a 
certain data type
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Eyeriss: Deep Neural Network Accelerator On 

• Exploits data reuse for 
100x reduction in 
memory accesses from 
global buffer and 1400x 
reduction in memory 
accesses from off-chip 
DRAM

• Overall >10x energy 
reduction compared to a 
mobile GPU (Nvidia TK1) 
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Algorithm & Hardware Co-Design 

• Co-design algorithm + hardware -> better than what each could achieve 
alone 

• Co-design approaches can be loosely grouped into two categories:
• Reduce size of operands for storage/compute (Reduced Precision) 
• Reduce number of operations for storage/compute (Sparsity and Efficient Network 

Architecture) 

• Hardware support required to increase savings in latency and energy
• Ensure that overhead of hardware support does not exceed benefits 

• Unlike previously discussed approaches, these approaches can affect 
accuracy!
• Evaluate tradeoff between accuracy and other metrics
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Optimizations – Reduced Precision

• Reduce data movement and 
storage cost for inputs and 
outputs of MAC 
• Smaller memory -> lower energy 

• Reduce cost of MAC 
• Cost of multiply increases with bit 

width (n) -> energy and area by 
O(n2); delay by O(n)
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Sparsity / Pruning 

• Reduce number of MACs 
• Anything multiplied by zero is zero -> avoid performing unnecessary MACs

• Reduce energy consumption and latency 

• Reduce data movement 
• If one of the inputs to MAC is zero, can avoid reading the other input

• Compress data by only sending non-zero values 

• Example: AlexNet weight reduction by pruning 
• CONV layers 2.7x; FC layers 9.9x 

• Overall Reduction: Weights 9x, MACs 3x
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Design Considerations for Sparsity 

• Impact on accuracy 
• Must consider difficulty of dataset, task, and DNN model 

• e.g., AlexNet and VGG known to be over parameterized and thus easy to prune weights; 
does method work on efficient DNN models? 

• Does hardware cost exceed benefits? 
• Need extra hardware to identify sparsity 

• e.g., Additional logic to identify non-zeros and store non-zero locations 

• Accounting for sparsity in both weights and activations is challenging 
• Need to compute intersection of two data streams rather than find next non-zero in one

• Compressed data will be variable length 
• Reduced flexibility in access order -> random access will have significant overhead
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Design Considerations for Co-Design 

• Impact on accuracy 
• Consider quality of baseline (initial) DNN model, difficulty of task and dataset 
• Sweep curve of accuracy versus latency/energy to see the full tradeoff 

• Does hardware cost exceed benefits? 
• Need extra hardware to support variable precision and shapes or to identify sparsity 

• Time required to perform co-design 
• e.g., Difficulty of tuning affected by 

• Number of hyperparameters 
• Uncertainty in relationship between hyperparameters and impact on performance 

• How does the approach perform on different platforms? 
• Is the approach a general method, or applicable on specific hardware?
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Design Considerations for ASIC 

• Increase PE utilization 
• Flexible mapping and on-chip network for different DNN models -> requires 

additional hardware 

• Reduce data movement 
• Custom memory hierarchy and dataflows that exploit data reuse 
• Apply compression to exploit redundancy in data -> requires additional hardware 

• Reduce time and energy per MAC 
• Reduce precision -> if precision varies, requires additional hardware; impact on 

accuracy 

• Reduce unnecessary MACs 
• Exploit sparsity -> requires additional hardware; impact on accuracy 
• Exploit redundant operations -> requires additional hardware 
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Summary

• DNNs are a critical component in the AI revolution, delivering record 
breaking accuracy on many important AI tasks for a wide range of 
applications; however, it comes at the cost of high computational 
complexity 

• Efficient processing of DNNs is an important area of research with many 
promising opportunities for innovation at various levels of hardware 
design, including algorithm co-design 

• When considering different DNN solutions it is important to evaluate with 
the appropriate workload in term of both input and model, and recognize 
that they are evolving rapidly 

• It is important to consider a comprehensive set of metrics when evaluating 
different DNN solutions: accuracy, throughput, latency, power, energy, 
flexibility, scalability and cost
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