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Conventional Computer Graphics VS Neural Graphics 1/3
● Goal: Synthesize photo-realistic and controllable imagery.
● Challenges: Rendering and inverse rendering algorithms are computationally 

demanding.
● Can neural networks be used to approximate algorithms used in classical 

computer graphics?
● Neural graphics: Approximating entire or parts of computer graphics using neural 

networks.
● Benefits: Compact representation, Simpler data structures, Deterministic 

rendering time, observations to image synthesis.
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Representing Scenes as Neural Radiance Fields

➔ Neural networks learn scene representations 
➔ Query the network to get color and densities

➔ Accumulate color and densities using volumetric 
rendering

➔ (position, view direction) - (color, volume density)
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Structure of a Typical NG Application 



How does NG Work (images)?
● Ray generation and sampling 

○ Representing the scene as a continuous 5D 
function
■ Can not capture the high frequency details
■ Blurry output frames 

○ Positional Encoding
● MLP queries

○ Neural Network replaces large N-d array
○ 100s of times for each pixel

● Volumetric rendering
○ Accumulation of colors and densities   



Sampling analogous to ray-marching  



How does NG Work (videos)?
● Deformation based approaches

○ Canonical representation of the network  
● Modulation based approaches 

○ Learned latent codes 
○ Network embeddings

● Research questions to ask! 
○ Can compression be used to 

■ Accelerate the inference by skipping 
some work? 

■ How much can the memory footprint be 
reduced without a significant dent on 
visual fidelity?

■ Speedup vs memory vs visual fidelity 
tradeoff.  



Representative NG Applications/Benchmarks
● Neural radiance and density fields (NeRF)
● Neural signed distance functions (NSDF)
● Gigapixel image approximation (GIA)
● Neural volume rendering (NVR)



NG Applications
● Neural radiance and density fields (NeRF): The MLP learns 

the 3D density and 5D light field of a given scene from image 
observations and corresponding perspective transforms

● Novel view synthesis from a few photos
○ Rendering: Capable of rendering extremely high 

resolution images!
○ Data Compression: 3D Geometry structures  ~2MB 

Network
● Virtual tourism on VR headsets

○ Realestate, Tourism etc
● Educational purposes 

○ Students looking at NeRF rendered organs (medical), 
machine parts (mechanical), building structures (civil) 
etc

● Gaming 
○ A combination of classical rendering and NeRF  

● Gigapixel image: The MLP learns the mapping from 2D 
coordinates to RGB colors of a high-resolution image. 

● Neural signed distance functions (SDF): The MLP learns the 
mapping from 3D coordinates to the distance to a surface. 

● Neural radiance caching (NRC): The MLP learns the 5D light 
field of a given scene from a Monte Carlo path tracer. 



Algorithmic Optimizations
● Problems with NG

○ Inference cost of MLP : 
■ 8 layers, 256 hidden neurons each

○ 100s of millions of MLP queries
■ 128 - 356 samples for each pixel (2k resolution)?

● Algorithmic solutions
○ Reduce the number of queries    

■ Auxiliary geometric structures (voxels, trees etc)
■ Depth prediction (NNs to predict important samples)
■ Goal: Early Ray Termination (ERT), Empty Space Skipping 

(ESS).
○ Reduce the size of MLP 

■ Learn parts of scene in tiny MLPs then query unique 
(smaller) MLP for subset of rays. 

■ Learn neural network embeddings to generate inputs for 
MLPs. 



Hierarchical Sampling - coarse/fine grained queries. 

● Coarse grained MLP
○ Uniform sampling

● Fine grained MLP 
○ Non-Uniform sampling  

● Number of samples/ray 
○ 128 - 356



Classical data structures + Neural representations 
● Neural Sparse Voxel Fields

○ Skip empty space using sparse voxel grid
○ + Efficient sampling, better quality, ~10x speedup 
○ - prior knowledge of the geometry of the scene, complicated training
○ - bigger memory footprint 
○ MLP query is still required for every sample

 



Smaller MLPs
● kiloNeRF

○ + ~ 3 OOM speedup (20 msec) – RTX2080
○ + Smaller model + less samples with EST+ERT trees
○ - 100MB instead of 2MB
○ - Bounded scenes 



Caching – memoization of NeRF 
● FastNeRF

○ + ~3 OOM speedup (<10 msec rendering time)
○ - 0.34-10 GB cache – not scalable – increases with resolution 

● Fast NeRF is memory bottlenecked instead of compute 



NNs for depth estimation
● DONeRF

○ Coarse grained MLP replaced with Depth Oracle 
Network 

○ Use a ground truth depth texture to place 
samples during training 

■ What is the best quality-speed tradeoff that 
can possibly be reached?

○ Skip empty space using depth prediction – depth 
oracle network 

○ Sampling placement strategy - log + warp
○ Oracle net solves the classification task 
○ DO MLP: One query for each ray; 8 layers, 256 

nodes/layer
○ NeRF MLP: One query for each sample  
○ 2-16 MLP queries are still required for every pixel 



Instant NGP - multi resolution hash encoding 
● Positional enc. - multi-res. hash enc.
● Trainable encoding parameters 

○ Multi-res. voxel vertices 
○ 20X fewer parameters vs dense voxel grids
○ Predictable mem. layout of hash tables - good caching  

● 3 - 25 samples per ray
● Linear interpolation to find nearest vertices 
● ~1 OOM smaller MLP

○ 1 to 3 layers, 16 to 256 nodes / layer
● Memory: ~200kB to 100MB; Speedup ~ 100s msec
● Potentially, much more suited for in-memory, 

near-memory architecture.



Does NG Need HW Support?



Extended Reality Systems Have Strict PPA Requirements

Many different deadlines need to be met to ensure a high-quality user experience!

Table taken from the illixr project. 
Illixr is an open source extended reality prototyping and evaluation tool

https://ieeexplore-ieee-org.proxy2.library.illinois.edu/document/9668280


Performance on RTX 3090



Neural Graphics on RTX3090



Waiting for Long Scoreboard to Resolve Global Mem. req.



Neural Fields Processor



Evaluation 



Estimated Performance Improvements 



Estimated FPS improvements 



Conclusion
● “If not NeRF, some form of Neural Rendering is here to stay” – Anton Kaplan
● XR has stringent PPA requirements 

○ Latency, Power, Energy
○ Power gap is ~2OOMX
○ Performance gap for unbounded scenes is ~1OOM - 2OOM  

● Rendering high quality images is difficult even on high end systems
● NG is a promising recent alternative to classical rendering methods
● We proposed “a solution” to accelerate NG in HW

○ Configurable enough to run a wide class of NG algorithms
○ Scalable architecture 

■ Integrated on edge, desktop and/or embedded devices depending upon the use-case/application 
■ Further SW/HW optimizations are required to minimize power and energy footprints for HMDs. 



Discussion / Questions!?


