Neural Graphics: An Architecture's Perspective

Muhammad Husnain Mubarik, Prof. Rakesh Kumar

Muhammad Husnain Mubarik

- PhD ECE UIUC 5th year
 - Computer Architecture, Hardware Accelerators
 - Hardware for graphics, real-time / energy efficient rendering (HPC and energy efficiency)
 - Hardware for ML/DL
 - Advised by: Rakesh Kumar
- Research Experience
 - Hardware Acceleration of Neural Graphics (ISCA 2023)
 - Domain specific hardware design for Neural Radiance Fields
 - Cloud System Research Lab (CSR), Intel Labs, Dec 2021 May 2021.
 - Graphics Research Organization (GRO), Intel, June 2022 Present.
 - RASR/LOU-E (Ongoing)
 - Hardware software co-design for Deep Learning based Super Resolution
 - Heterogeneous Platforms Lab (HPL), Intel Labs, May 2021 Aug 2021
 - DASICS/MASICS (Ongoing)
 - Model/Data-specific Design of Deeply-Embedded Tiny Neural Network Accelerators
 - Encryption in Flexible Electronics (DATE 2023)
 - Rethinking Programmable Earable Processors (ISCA 2022)
 - Earable Computing "Powerful" Earbuds!! applications / architecture
 - Architectural Support for Supply Chain Resilience (Ongoing)
 - $\circ \qquad {\sf Enabling Strong Encryption On Flexible Devices (Ongoing)}$
 - Printed Machine Learning Classifiers (MICRO 2020) IEEE Micro Top Picks Honorable Mention 2021
 - Printed Microprocessors (ISCA 2020)

Contents

- About Me
- Conventional Computer Graphics VS Neural Graphics (NG)
- An overview of NG
- State of the art in NG: HW/SW optimizations
- Motivation to accelerate NG in hardware
- NGPC: An accelerator for NG
- Conclusion
- Discussion / Questions

Conventional Computer Graphics VS Neural Graphics 1/3

- Goal: Synthesize photo-realistic and controllable imagery.
- Challenges: Rendering and inverse rendering algorithms are computationally demanding.
- Can neural networks be used to approximate algorithms used in classical computer graphics?
- Neural graphics: Approximating entire or parts of computer graphics using neural networks.
- Benefits: Compact representation, Simpler data structures, Deterministic rendering time, observations to image synthesis.

Conventional Computer Graphics VS Neural Graphics 2/3

Conventional Computer Graphics VS Neural Graphics 3/3

Representing Scenes as Neural Radiance Fields

- → Neural networks learn scene representations
- → Query the network to get color and densities
- → Accumulate color and densities using volumetric rendering
- → (position, view direction) (color, volume density)

Gist of Neural Graphics

Structure of a Typical NG Application

a) Structure of a typical neural graphics application

b) Neural graphics application with input encoding - Loss function may or may not update encoding parameters

How does NG Work (images)?

- Ray generation and sampling
 - Representing the scene as a continuous 5D function
 - Can not capture the high frequency details
 - Blurry output frames
 - Positional Encoding
- MLP queries
 - Neural Network replaces large N-d array
 - 100s of times for each pixel
- Volumetric rendering

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t), \mathbf{d})dt, \text{ where } T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds\right).$$

Sampling analogous to ray-marching

How does NG Work (videos)?

- Deformation based approaches
 - Canonical representation of the network
- Modulation based approaches
 - Learned latent codes
 - Network embeddings
- Research questions to ask!
 - Can compression be used to
 - Accelerate the inference by skipping some work?
 - How much can the memory footprint be reduced without a significant dent on visual fidelity?
 - Speedup vs memory vs visual fidelity tradeoff.

Representative NG Applications/Benchmarks

- Neural radiance and density fields (NeRF)
- Neural signed distance functions (NSDF)
- Gigapixel image approximation (GIA)
- Neural volume rendering (NVR)

NG Applications

- Neural radiance and density fields (NeRF): The MLP learns the 3D density and 5D light field of a given scene from image observations and corresponding perspective transforms
- Novel view synthesis from a few photos
 - **Rendering:** Capable of rendering extremely high resolution images!
 - Data Compression: 3D Geometry structures ~2MB Network
- Virtual tourism on VR headsets
 - Realestate, Tourism etc
- Educational purposes
 - Students looking at NeRF rendered organs (medical), machine parts (mechanical), building structures (civil) etc
- Gaming
 - A combination of classical rendering and NeRF
- Gigapixel image: The MLP learns the mapping from 2D coordinates to RGB colors of a high-resolution image.
- Neural signed distance functions (SDF): The MLP learns the mapping from 3D coordinates to the distance to a surface.
- Neural radiance caching (NRC): The MLP learns the 5D light field of a given scene from a Monte Carlo path tracer.

Algorithmic Optimizations

- Problems with NG
 - Inference cost of MLP :
 - 8 layers, 256 hidden neurons each
 - 100s of millions of MLP queries
 - 128 356 samples for each pixel (2k resolution)?
- Algorithmic solutions
 - Reduce the number of queries
 - Auxiliary geometric structures (voxels, trees etc)
 - Depth prediction (NNs to predict important samples)
 - Goal: Early Ray Termination (ERT), Empty Space Skipping (ESS).
 - Reduce the size of MLP
 - Learn parts of scene in tiny MLPs then query unique (smaller) MLP for subset of rays.
 - Learn neural network embeddings to generate inputs for MLPs.

Hierarchical Sampling - coarse/fine grained queries.

Coarse grained MLP

 Uniform sampling

 Fine grained MLP

 Non-Uniform sampling

 Number of samples/ray

 128 - 356

Classical data structures + Neural representations

- Neural Sparse Voxel Fields
 - Skip empty space using sparse voxel grid
 - + Efficient sampling, better quality, ~10x speedup
 - - prior knowledge of the geometry of the scene, complicated training
 - - bigger memory footprint
 - MLP query is still required for every sample

Smaller MLPs

- kiloNeRF
 - \circ + ~ 3 OOM speedup (20 msec) RTX2080
 - + Smaller model + less samples with EST+ERT trees
 - \circ 100MB instead of 2MB
 - Bounded scenes

Caching – memoization of NeRF

- FastNeRF
 - + ~3 OOM speedup (<10 msec rendering time)
 - \circ 0.34-10 GB cache not scalable increases with resolution
- Fast NeRF is memory bottlenecked instead of compute

NNs for depth estimation

- DONeRF
 - Coarse grained MLP replaced with Depth Oracle Network
 - Use a ground truth depth texture to place samples during training
 - What is the best quality-speed tradeoff that can possibly be reached?
 - Skip empty space using depth prediction depth oracle network
 - Sampling placement strategy log + warp
 - Oracle net solves the classification task
 - DO MLP: One query for each ray; 8 layers, 256 nodes/layer
 - NeRF MLP: One query for each sample
 - \circ 2-16 MLP queries are still required for every pixel

Instant NGP - multi resolution hash encoding

- Positional enc. multi-res. hash enc.
- Trainable encoding parameters
 - Multi-res. voxel vertices
 - 20X fewer parameters vs dense voxel grids
 - Predictable mem. layout of hash tables good caching
- 3 25 samples per ray
- Linear interpolation to find nearest vertices
- ~1 OOM smaller MLP
 - 1 to 3 layers, 16 to 256 nodes / layer
- Memory: ~200kB to 100MB; Speedup ~ 100s msec
- Potentially, much more suited for in-memory, near-memory architecture.

Does NG Need HW Support?

Extended Reality Systems Have Strict PPA Requirements

Metric	Varjo VR-3 [<mark>19</mark>]	Ideal VR [17], [20]	Microsoft HoloLens 2	Ideal AR [17], [20], [21]
Resolution (MPixels)	15.7	200	4.4 [22]	200
	115	Full:	52 diagonal	Full:
Field-of-view		165×175	[23], [24]	165×175
(Degrees)		Stereo:		Stereo:
		120×135		120×135
Refresh rate (Hz)	90	90 - 144	120 [25]	00 144
Motion-to-photon	< 20	< 20	< 9 [26]	< 5
latency (ms)				
Power (W)	N/A	1 - 2	> 7 [27]–[29]	0.1 - 0.2
Silicon area (mm^2)	N/A	100 - 200	> 173 [27], [30]	< 100
Weight (grams)	944	100 - 200	566 [22]	10s

Component	Parameter	Range	Tuned	Deadline
Camera (VIO)	Frame rate Resolution Exposure	15 – 100 Hz VGA – 2K 0.2 – 20 ms	15 Hz VGA 1 ms	66.7 ms
IMU (Imegrator)	Frame rate	≤ 800 Hz	500 Hz	2,005
Display (Visual pipeline + Application)	Frame rate Resolution Field-of-view	30 – 144 Hz ≤ 2K ≤ 180°	120 Hz 2K 90°	8.33 ms - -
Audio (Encoding + Playback)	Eramo rato Block size	48 00 Hz 256 - 1024	48 Hz 1024	20.8 ms -

Approximate	Current	Desired	
Res (Mpixels)	4	200	
Power (W)	10	0.1	
Weight (g)	500	10	

Table taken from the illixr project.

Illixr is an open source extended reality prototyping and evaluation tool

Many different deadlines need to be met to ensure a high-quality user experience!

Performance on RTX 3090

Neural Graphics on RTX3090

Waiting for Long Scoreboard to Resolve Global Mem. req.

Neural Fields Processor

a) Encoding Engine

c) Neural Fields Processor (NFP)

b) MLP Engine

Evaluation

The Neural Graphics application parameters

- The input encoding type,
- The grid resolution levels,
- The input encoding parameters,The MLP structure

The architecture parameters

- The number of NF-P units in the NFC,
- The operating frequency of the NFC,
- · The critical path delay of the architecture,
- The memory access time for different on-chip SRAM blocks of the NF-P.
- The memory access time for device memory,
- The area and power estimates of the NFC

Frame Resolution

Emulator

Kernel level breakdown of performance of neural graphics application on a

GPU

Outputs

- The overall performance of the neural graphics application with the input encoding and the MLP scheduled on NPC and the rest of the kernels scheduled on the GPU.
- The overall area and power of the NPC.

App.	Input BW (GB/s)	Output BW (GB/s)	Totoal BW (GB/s)	Access time (ms
NeRF	69.523	46.349	231.743	4.126
NSDF	34.761	34.761	69.523	1.238
GIA	34.761	34.761	69.523	1.238
NVR	34.761	34.761	69.523	1.238

Estimated Performance Improvements

Estimated FPS improvements

Conclusion

- "If not NeRF, some form of Neural Rendering is here to stay" Anton Kaplan
- XR has stringent PPA requirements
 - Latency, Power, Energy
 - Power gap is ~200MX
 - Performance gap for unbounded scenes is ~100M 200M
- Rendering high quality images is difficult even on high end systems
- NG is a promising recent alternative to classical rendering methods
- We proposed "a solution" to accelerate NG in HW
 - Configurable enough to run a wide class of NG algorithms
 - Scalable architecture
 - Integrated on edge, desktop and/or embedded devices depending upon the use-case/application
 - Further SW/HW optimizations are required to minimize power and energy footprints for HMDs.

Discussion / Questions!?