
Neural Graphics: An
Architectureʼs Perspective
Muhammad Husnain Mubarik, Prof. Rakesh Kumar

Muhammad Husnain Mubarik
● PhD ECE - UIUC – 5th year

○ Computer Architecture, Hardware Accelerators
○ Hardware for graphics, real-time / energy efficient rendering (HPC and energy efficiency)
○ Hardware for ML/DL
○ Advised by: Rakesh Kumar

● Research Experience
○ Hardware Acceleration of Neural Graphics (ISCA 2023)

■ Domain specific hardware design for Neural Radiance Fields
■ Cloud System Research Lab (CSR), Intel Labs, Dec 2021 - May 2021.
■ Graphics Research Organization (GRO), Intel, June 2022 - Present.

○ RASR/LOU-E (Ongoing)
■ Hardware software co-design for Deep Learning based Super Resolution
■ Heterogeneous Platforms Lab (HPL), Intel Labs, May 2021 - Aug 2021

○ DASICS/MASICS (Ongoing)
■ Model/Data-specific Design of Deeply-Embedded Tiny Neural Network Accelerators

○ Encryption in Flexible Electronics (DATE 2023)
○ Rethinking Programmable Earable Processors (ISCA 2022)

■ Earable Computing – “Powerful” Earbuds!! applications / architecture
○ Architectural Support for Supply Chain Resilience (Ongoing)
○ Enabling Strong Encryption On Flexible Devices (Ongoing)
○ Printed Machine Learning Classifiers (MICRO 2020) IEEE Micro Top Picks - Honorable Mention 2021
○ Printed Microprocessors (ISCA 2020)

Contents
● About Me
● Conventional Computer Graphics VS Neural Graphics (NG)

● An overview of NG
● State of the art in NG: HW/SW optimizations
● Motivation to accelerate NG in hardware
● NGPC: An accelerator for NG
● Conclusion
● Discussion / Questions

Conventional Computer Graphics VS Neural Graphics 1/3
● Goal: Synthesize photo-realistic and controllable imagery.
● Challenges: Rendering and inverse rendering algorithms are computationally

demanding.
● Can neural networks be used to approximate algorithms used in classical

computer graphics?
● Neural graphics: Approximating entire or parts of computer graphics using neural

networks.
● Benefits: Compact representation, Simpler data structures, Deterministic

rendering time, observations to image synthesis.

Conventional Computer Graphics VS Neural Graphics 2/3

Conventional Computer Graphics VS Neural Graphics 3/3

Representing Scenes as Neural Radiance Fields

➔ Neural networks learn scene representations
➔ Query the network to get color and densities

➔ Accumulate color and densities using volumetric
rendering

➔ (position, view direction) - (color, volume density)

Gist of Neural Graphics

(x,y,z,θ,ɸ)

MLP
with scene

representation
learned in

weights

RGB𝝈

Structure of a Typical NG Application

How does NG Work (images)?
● Ray generation and sampling

○ Representing the scene as a continuous 5D
function
■ Can not capture the high frequency details
■ Blurry output frames

○ Positional Encoding
● MLP queries

○ Neural Network replaces large N-d array
○ 100s of times for each pixel

● Volumetric rendering
○ Accumulation of colors and densities

Sampling analogous to ray-marching

How does NG Work (videos)?
● Deformation based approaches

○ Canonical representation of the network
● Modulation based approaches

○ Learned latent codes
○ Network embeddings

● Research questions to ask!
○ Can compression be used to

■ Accelerate the inference by skipping
some work?

■ How much can the memory footprint be
reduced without a significant dent on
visual fidelity?

■ Speedup vs memory vs visual fidelity
tradeoff.

Representative NG Applications/Benchmarks
● Neural radiance and density fields (NeRF)
● Neural signed distance functions (NSDF)
● Gigapixel image approximation (GIA)
● Neural volume rendering (NVR)

NG Applications
● Neural radiance and density fields (NeRF): The MLP learns

the 3D density and 5D light field of a given scene from image
observations and corresponding perspective transforms

● Novel view synthesis from a few photos
○ Rendering: Capable of rendering extremely high

resolution images!
○ Data Compression: 3D Geometry structures ~2MB

Network
● Virtual tourism on VR headsets

○ Realestate, Tourism etc
● Educational purposes

○ Students looking at NeRF rendered organs (medical),
machine parts (mechanical), building structures (civil)
etc

● Gaming
○ A combination of classical rendering and NeRF

● Gigapixel image: The MLP learns the mapping from 2D
coordinates to RGB colors of a high-resolution image.

● Neural signed distance functions (SDF): The MLP learns the
mapping from 3D coordinates to the distance to a surface.

● Neural radiance caching (NRC): The MLP learns the 5D light
field of a given scene from a Monte Carlo path tracer.

Algorithmic Optimizations
● Problems with NG

○ Inference cost of MLP :
■ 8 layers, 256 hidden neurons each

○ 100s of millions of MLP queries
■ 128 - 356 samples for each pixel (2k resolution)?

● Algorithmic solutions
○ Reduce the number of queries

■ Auxiliary geometric structures (voxels, trees etc)
■ Depth prediction (NNs to predict important samples)
■ Goal: Early Ray Termination (ERT), Empty Space Skipping

(ESS).
○ Reduce the size of MLP

■ Learn parts of scene in tiny MLPs then query unique
(smaller) MLP for subset of rays.

■ Learn neural network embeddings to generate inputs for
MLPs.

Hierarchical Sampling - coarse/fine grained queries.

● Coarse grained MLP
○ Uniform sampling

● Fine grained MLP
○ Non-Uniform sampling

● Number of samples/ray
○ 128 - 356

Classical data structures + Neural representations
● Neural Sparse Voxel Fields

○ Skip empty space using sparse voxel grid
○ + Efficient sampling, better quality, ~10x speedup
○ - prior knowledge of the geometry of the scene, complicated training
○ - bigger memory footprint
○ MLP query is still required for every sample

Smaller MLPs
● kiloNeRF

○ + ~ 3 OOM speedup (20 msec) – RTX2080
○ + Smaller model + less samples with EST+ERT trees
○ - 100MB instead of 2MB
○ - Bounded scenes

Caching – memoization of NeRF
● FastNeRF

○ + ~3 OOM speedup (<10 msec rendering time)
○ - 0.34-10 GB cache – not scalable – increases with resolution

● Fast NeRF is memory bottlenecked instead of compute

NNs for depth estimation
● DONeRF

○ Coarse grained MLP replaced with Depth Oracle
Network

○ Use a ground truth depth texture to place
samples during training

■ What is the best quality-speed tradeoff that
can possibly be reached?

○ Skip empty space using depth prediction – depth
oracle network

○ Sampling placement strategy - log + warp
○ Oracle net solves the classification task
○ DO MLP: One query for each ray; 8 layers, 256

nodes/layer
○ NeRF MLP: One query for each sample
○ 2-16 MLP queries are still required for every pixel

Instant NGP - multi resolution hash encoding
● Positional enc. - multi-res. hash enc.
● Trainable encoding parameters

○ Multi-res. voxel vertices
○ 20X fewer parameters vs dense voxel grids
○ Predictable mem. layout of hash tables - good caching

● 3 - 25 samples per ray
● Linear interpolation to find nearest vertices
● ~1 OOM smaller MLP

○ 1 to 3 layers, 16 to 256 nodes / layer
● Memory: ~200kB to 100MB; Speedup ~ 100s msec
● Potentially, much more suited for in-memory,

near-memory architecture.

Does NG Need HW Support?

Extended Reality Systems Have Strict PPA Requirements

Many different deadlines need to be met to ensure a high-quality user experience!

Table taken from the illixr project.
Illixr is an open source extended reality prototyping and evaluation tool

https://ieeexplore-ieee-org.proxy2.library.illinois.edu/document/9668280

Performance on RTX 3090

Neural Graphics on RTX3090

Waiting for Long Scoreboard to Resolve Global Mem. req.

Neural Fields Processor

Evaluation

Estimated Performance Improvements

Estimated FPS improvements

Conclusion
● “If not NeRF, some form of Neural Rendering is here to stay” – Anton Kaplan
● XR has stringent PPA requirements

○ Latency, Power, Energy
○ Power gap is ~2OOMX
○ Performance gap for unbounded scenes is ~1OOM - 2OOM

● Rendering high quality images is difficult even on high end systems
● NG is a promising recent alternative to classical rendering methods
● We proposed “a solution” to accelerate NG in HW

○ Configurable enough to run a wide class of NG algorithms
○ Scalable architecture

■ Integrated on edge, desktop and/or embedded devices depending upon the use-case/application
■ Further SW/HW optimizations are required to minimize power and energy footprints for HMDs.

Discussion / Questions!?

