
Hardware Acceleration of Neural Graphics
Muhammad Husnain Mubarik∗

mubarik3@illinois.edu
University of Illinois Urbana Champaign

Champaign, Illinois, USA

Ramakrishna Kanungo
kanungo3@illinois.edu

University of Illinois Urbana Champaign
Champaign, Illinois, USA

Tobias Zirr
tobias.zirr@intel.com
Intel Corporation

Karlsruhe, Germany

Rakesh Kumar
rakeshk@illinois.edu

University of Illinois Urbana Champaign
Champaign, Illinois, USA

ABSTRACT
Rendering and inverse rendering techniques have recently attained
powerful new capabilities and building blocks in the form of neural
representations (NR), with derived rendering techniques quickly
becoming indispensable tools next to classic computer graphics
algorithms, covering a wide range of functions throughout the full
pipeline from sensing to pixels. NRs have recently been used to
directly learn the geometric and appearance properties of scenes
that were previously hard to capture, and to re-synthesize photo
realistic imagery based on this information, thereby promising
simplifications and replacements for several complex traditional
computer graphics problems and algorithms with scalable quality
and predictable performance. In this work we ask the question:
Does neural graphics (graphics based on NRs) need hardware sup-
port?We studied four representative neural graphics applications
(NeRF, NSDF, NVR, and GIA) showing that, if we want to render
4k resolution frames at 60 frames per second (FPS) there is a gap
of ∼ 1.51× to 55.50× in the desired performance on current GPUs.
For AR and VR applications, there is an even larger gap of ∼ 2-
4 orders of magnitude (OOM) between the desired performance
and the required system power. We identify that the input encod-
ing and the multi-layer perceptron kernels are the performance
bottlenecks, consuming 72.37%, 60.0% and 59.96% of application
time for multi resolution hashgrid encoding, multi resolution denseg-
rid encoding and low resolution densegrid encoding, respectively. We
propose a neural graphics processing cluster (NGPC) – a scalable
and flexible hardware architecture that directly accelerates the in-
put encoding and multi-layer perceptron kernels through dedicated
engines and supports a wide range of neural graphics applications.
To achieve good overall application level performance improve-
ments, we also accelerate the rest of the kernels by fusion into a
single kernel, leading to a ∼ 9.94× speedup compared to previous
optimized implementations [17] which is sufficient to remove this

∗Part of the work was done during Mubarik’s internship at Intel.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’23, June 17–21, 2023, Orlando, FL, USA.
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0095-8/23/06. . . $15.00
https://doi.org/10.1145/3579371.3589085

performance bottleneck. Our results show that, NGPC gives up
to 58.36× end-to-end application-level performance improvement,
for multi resolution hashgrid encoding on average across the four
neural graphics applications, the performance benefits are 12.94×,
20.85×, 33.73× and 39.04× for the hardware scaling factor of 8, 16,
32 and 64, respectively. Our results show that with multi resolution
hashgrid encoding, NGPC enables the rendering of 4k Ultra HD
resolution frames at 30 FPS for NeRF and 8k Ultra HD resolution
frames at 120 FPS for all our other neural graphics applications.

CCS CONCEPTS
• Computing methodologies → Computer graphics; Machine
learning; • Computer systems organization → Real-time system
architecture; Architectures.

KEYWORDS
NeRF, instant-ngp, hardware accelerators, neural graphics

ACM Reference Format:
MuhammadHusnainMubarik, Ramakrishna Kanungo, Tobias Zirr, and Rakesh
Kumar. 2023. Hardware Acceleration of Neural Graphics. In Proceedings of
the 50th Annual International Symposium on Computer Architecture (ISCA
’23), June 17–21, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3579371.3589085

1 INTRODUCTION
The fundamental goal of classical computer graphics is to synthe-
size photo-realistic and controllable imagery. Rendering algorithms
synthesize an image of a scene from the geometric and material
properties of the scene, often through tracing the path of a photon
from light source to the object and utilizing the information about
the geometry and scattering distributions of the object to simulate
the interaction of light with the object. Inverse rendering algorithms
follow the reverse process of rendering. From the final image, they
provide guidance about how geometry andmaterials of a scene need
to be adjusted. Both rendering and inverse rendering algorithms
are well-known to be computationally challenging tasks [22, 30, 38].
As such, search has gone on for decades to build efficient rendering
and inverse rendering algorithms [12, 14, 22, 25, 40].

Since visual data, which is the output of the classical rendering
and inverse rendering algorithms, is usually resilient to approx-
imations [16, 21], and as neural networks are considered to be
particularly good function approximation algorithms, a natural

https://orcid.org/0009-0005-0447-7038
https://orcid.org/0009-0008-5447-3782
https://orcid.org/0009-0003-1091-3858
https://orcid.org/0009-0008-1535-1889
https://doi.org/10.1145/3579371.3589085
https://doi.org/10.1145/3579371.3589085

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Trovato and Tobin, et al.

question arises: can neural networks be used to approximate the algo-
rithms used in classical computer graphics? Recent works [5, 13, 15,
17, 19, 20, 26] have shown that such neural representations can in
fact be superior in learning and representing the physical and the
material properties of the scenes. Then the information learned in
these networks is extremely compact and can be used to synthesize
the photo-realistic imagery. This process of approximating entire
or parts of computer graphics using neural networks is known as
neural graphics [35]. Neural graphics promises a fast, deterministic
time replacement for traditional rendering algorithms.

In this paper we ask the question: does neural graphics need
hardware support?We focus on four neural graphics applications
recently presented as a representative set of neural graphics rep-
resentations [17]: 1) Neural radiance and density fields (NeRF), 2)
Neural signed distance functions (NSDF), 3) Gigapixel image ap-
proximation (GIA) and 4) Neural volume rendering (NVR). These
four applications cover a wide range of graphics tasks including
rendering, novel view synthesis [4], 3D shape representation [24],
simulation, path planning [28], 3D modeling [34], and image ap-
proximations. We first performed an algorithmic analysis of the
neural graphics applications and found that all the neural graph-
ics applications require a multi-layer perceptron to learn the scene
representations and an input encoding kernel to capture high fre-
quency information in the visual data. We studied a wide range of
input encoding algorithms and carefully picked three representa-
tive input encoding algorithms for further study, 1) multi resolution
hashgrid encoding, 2) multi resolution densegrid encoding and 3) low
resolution densegrid encoding. We analyzed the above four neural
graphics applications for all three encoding types, on a modern
desktop class GPU (RTX 3090). Our profiling shows that, if we want
to render 4k resolution frames at 60 FPS, there is a gap of ∼ 1.51×
to 55.50× between the desired performance and the state of the art.
This motivates the need to provide hardware acceleration to bridge
this gap.

In order to understand the performance bottlenecks of the rep-
resentative neural graphics applications, we perform kernel level
performance breakdown analysis. Our results show that input en-
coding and multi-layer perceptron are the two most expensive
kernels in all neural graphics applications consuming 72.37%, 60.0%
and 59.96% of application time formulti resolution hashgrid encoding,
multi resolution densegrid encoding and low resolution densegrid en-
coding respectively. Based on these results, we design an archi-
tecture - a neural fields processor (Figure 9) - to accelerate these
stages in hardware using an input encoding engine and a hard-
ware MLP engine. The input encoding engine directly supports
operations and dataflow identified by the kernel-level analysis of
the input encoding (Section 4). The MLP engine is similarly opti-
mized for the small MLPs common in neural graphics multi-layer
perceptron kernels. Moreover, in neural graphics, the outputs of
the input encoding kernel are always consumed by the multi-layer
perceptron kernel (Figure 4) We exploit this fact in the neural fields
processor hardware by fusing the input encoding and multi-layer
perceptron engines.

We propose a scalable neural graphics processing cluster (NGPC)
- consisting of several neural fields processor units - along with
the existing GPC units. We evaluate the performance of the neural
graphics applications on our proposed architecture for the scaling

Figure 1: Rendering pipeline: Conventional Computer Graphics [2]
VS Neural Graphics [36].

factor (number of neural fields processor units) of 8, 16, 32 and 64.
For multi resolution hashgrid encoding, the performance benefits
of our architecture are 12.94×, 20.85×, 33.73× and 39.04× for the
scaling factor of 8, 16, 32 and 64 respectively. Our results show
that with multi resolution hashgrid encoding, NGPC enables the
rendering of 4k Ultra HD resolution frames at 30 FPS for NeRF and
8k Ultra HD resolution frames at 120 FPS for all our other neural
graphics applications.

Our work makes the following contributions:
• Neural graphics applications require dedicated hardware
acceleration for real-time rendering. We quantify the perfor-
mance gap between the modern hardware and the desired
performance targets. ∼ 1.51× to 55.50× for rendering 4k
resolution frames at 60 FPS.

• We studied the neural graphics applications and identified
that the input encoding and the multi-layer perceptron ker-
nels are common performance bottlenecks.

• We present an efficient hardware architecture to support neu-
ral graphics applications in real time. Our architecture accel-
erates the input encoding and multi-layer perceptron kernels
through dedicated engines and fuses the engines for a more
efficient dataflow. We show that our hardware architecture
is scalable and flexible enough to support a wide range of
neural graphics applications.

• We quantify the benefits of our hardware architecture and
show significant performance benefits against GPU baseline
for all four neural graphics applications and three input
encoding types.

2 NEURAL GRAPHICS: AN OVERVIEW
Figure 1 depicts a high-level comparison of conventional rendering
pipeline and the neural graphics pipeline. Rendering in conven-
tional real-time graphics starts with the detailed description of the
physical and material properties of the scene. This description is
passed as input to the rendering pipeline which then generates a
2D image (frame) as output. In neural rendering, the description of
the geometric and material properties of the scene are derived from
multiple scene observations (images or video), which serves as an
input to the neural rendering pipeline. Neural graphics replaces the
conventional rendering pipeline with much simpler neural render-
ing pipeline. The neural rendering pipeline at high level consists of
three stages.

1) Input stage: This stage is responsible for generating the in-
puts to a neural network. In classical computer vision and image

Hardware Acceleration of Neural Graphics ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

processing applications, the typical goal is image classification or
image transformation. In these applications, an image is typically
used as input to the neural network. The input layer of the network
can be vary large depending upon the resolution of the image. For
example, if a network is processing a 224 × 224 RGB image (as in
case of AlexNet [3]), the input layer has 224 × 224 × 3 dimensions.
Unlike classical computer vision and image processing applications,
where usually an image is passed as input to the neural network,
in neural graphics applications, the neural network inputs are ei-
ther encoded pixel positions/coordinates (𝑥,𝑦, 𝑧) or encoded pixel
positions/coordinates and camera viewing angle (𝑥,𝑦, 𝑧, 𝜃, 𝜙), de-
pending upon the application under consideration.

2) Inference stage: This stage is responsible for learning the
detailed information about the scene. The learning objective of the
neural graphics applications is different from a typical computer
vision and image processing application. In a typical computer vi-
sion and image processing application, the goal is usually to learn
common features from a batch of training images and then, during
inference phase, classify the images into a set of classes by identi-
fying the features in them. The fully connected layers on the input
side of a neural network usually become very expensive for a typical
computer vision application and hence the neural networks used
in classical computer vision applications are usually convolutional
neural networks. In a neural graphics application, the goal is to
learn the detailed representation of the scene, which usually com-
prises high-frequency visual data. Suitable input encodings such
as frequency encoding [15] and parametric grid encodings [17]
combined with strong compression capabilities of fully connected
networks have been shown to learn neural representations for such
information well.

In training phase, the scene observations are learned by the neu-
ral network using classical neural network training techniques (for
example gradient descent and Adam optimization), where the loss
function propagates the gradients in the backward direction and ad-
justs the weights of the neural network. In the inference phase, the
network outputs the pixel color (𝑅𝐺𝐵) or pixel color and density
information (𝑅𝐺𝐵, 𝜎) using the given pixel coordinates/positions
(𝑥,𝑦, 𝑧) or pixel coordinates/positions and camera viewing angle
(𝑥,𝑦, 𝑧, 𝜃, 𝜙) as inputs.

3) Compositing stage: The output of the fully-connected neural
network is either three channel pixel color (𝑅𝐺𝐵) or pixel color and
density information (𝑅𝐺𝐵, 𝜎). The goal of the output stage is to ac-
cumulate the color and density information of the individual pixels
and assemble the final output imagery. Classical volume rendering
techniques [7, 11, 39] can be used to project the output colors and
densities into an image.

Figure 2 shows the high level benefits of neural graphics over
conventional computer graphics. 1)More compact representa-
tions of scenes: In classical computer graphics, "Fields" are widely
used to parameterize the physical properties of an object or scene
over space and time. Such space-time parameterizations, defined
for all spatial and/or temporal coordinates, are needed to synthesize
3D shapes and/or 2D images. In order to faithfully store arbitrary
functions by way of classic discrete samples, high sampling rates

Figure 2: Inherent benefits of Neural Graphics over Conventional
Computer Graphics.

are needed to avoid aliasing. As the complexity of the scene grows,
the memory requirement to store these samples explodes. However,
in neural graphics, the field is parameterized, fully or in part, by
a neural network. Such parameterized fields are known as neural
fields. Neural representations are known to adapt well to contin-
uous functions with sparse discontinuities even with much lower
storage capacities. Hence, neural fields enable compact and effi-
cient representations of the scene. 2) Simpler domain-agnostic
data structures: In conventional computer graphics, complex data
structures such as 3D point clouds [9], 3D meshes [37], voxel based
3D models [32], parametric models, and depth maps [29] are used
for 3D representations. These data structures are scene geometry
dependent. In neural graphics, while aspects of such data struc-
tures may still be required to limit network complexity at larger
scales, extended neural representations often lead to more unified,
higher-level data structures and thus reduced complexity. 3) Pre-
dictable performance: In conventional computer graphics, the
rendering time strongly depends on the complexity of the scene. In
neural graphics, as large parts of the rendering are replaced by a
constant-cost inference operation, the rendering time becomes less
dependent on details of the scene, and instead is mostly a function
of scale and higher-level scene layout. 4) Higher-level scene defi-
nition: As explained earlier, in conventional computer graphics a
complete description of the physical and material properties of the
scene is required for rendering. In neural graphics, however, the
properties of the scene can implicitly be learned from a few images
or video of the scene. This leads to much simpler scene definitions.

The above benefits make neural graphics arguably the biggest
advance in the field of computer graphics in decades.

2.1 Input Encoding
Photo-realistic visual data usually has high frequency information.
For example, the crisp RGB colors of a gigapixel image, the detailed
texture, lighting, and geometry information of a 3D scene, etc.,
are some of the examples of high frequency visual data. In neural
graphics , multi-layer perceptrons are used to learn and represent
this high frequency visual data. Previous works have shown that
multi-layer perceptrons (Figure 3-a) are biased towards learning
low frequency information [15, 27] of the given data and are not
good function approximators when high frequency information
needs to be captured. In order to solve the problem of learning
high frequency visual information using multi-layer perceptron,
the original NeRF paper [15] (Vanilla-NeRF) introduced the idea
of input encoding. The idea of input encoding is to map the low

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Trovato and Tobin, et al.

Figure 3: Different stages of a neural graphics pipeline.

Figure 4: Structure of the four neural graphics applications under
study.

dimensional input vectors to higher dimensional space using a
mapping function (Figure 3-b). The mapping function can either
be a fixed high-frequency function (sin, cos, fourier transform) or a
learn-able function (embeddings, neural networks). Based on the
mapping function used, the input encoding schemes can be divided
into two high level categories: 1) fixed-function encodings 2) para-
metric encodings.

1) Fixed-function encodings:
Vanilla-NeRF [15] was the first paper to show that, mapping the

5D vector of input positions and viewing angle to a higher dimen-
sional space, by using high frequency sin and cos functions, and
using the outputs of the high frequency functions as input features
to the multi-layer perceptron, enables the multi-layer perceptron to
learn the high frequency variations of the scene. Since vanilla-NeRF,
there had been a lot of work on improving the input encoding. Tan-
cik et al. [33] showed, for example, that replacing sin and cos with
Fourier transform lets the network learn high frequency functions
in low dimensional domains. These encoding schemes are known
as frequency encoding schemes. as they use high frequency sinosoids

for mapping the low dimensional inputs to higher dimension space.
All these schemes are fixed function encoding schemes as they use
a fixed compute function for mapping the low dimensional input
vector to higher dimensional space.

2) Parametric encodings: Recently, state of the art results
have been shown by parametric encodings. Parametric encoding
schemes essentially use additional trainable parameters in addition
to weights and biases of the neural networks to learn information
about the scene. These parameters can be arranged as auxiliary data
structures and used to map low dimensional positions to higher di-
mensional inputs, which are then used to query the neural network.
In a popular class of parametric schemes [17, 19], the trainable pa-
rameters are stored in generic lookup tables where the number of
parameters are picked based on the desired reconstruction quality.
These works propose to divide the scene into multiple resolution
levels (grid) and use a separate lookup table for each resolution level.
As the scene is divided into multiple grids, the approach is called
multi-resolution grid encoding and the number of lookup tables
(or resolution levels) can also be optimized as a hyper parameter.
Different resolution levels give different output fidelity, [17] has
shown that for most neural graphics applications, depending upon
the type of grid used, 8 to 16 resolution levels produce acceptable
visual fidelity.

The different steps performed in multi-resolution grid encoding
are explained in Figure 6. The encoding parameters are arranged
into L levels, each containing up to T feature vectors with dimen-
sionality F. Each level is independent and stores the feature vectors
at the vertices of a grid. Each corner of the grid is mapped to an
entry in the level’s respective feature vector array where each fea-
ture vector array has a fixed size of T. The mapping between the
grid and the feature vector array is 1:1 for coarse levels because
the dense grid requires fewer than T parameters for coarse levels.
However, for finer levels, the feature vector can either be mapped
1:1 or treated as hash table and a hash function can be used to index
into the array [17]. The input encoding, where a hash function is
used to index into lookup table, is called multi-resolution hashgrid
encoding. Whereas, the encoding where 1:1 mapping is used for all
the resolution levels is known asmulti-resolution densegrid encoding.
The hash function used by the state of the art parametric encoding
scheme (instant-NGP [17]) is presented in Equation 1.

ℎ(𝑥) = (⊕𝑑𝑖=1𝑥𝑖𝜋𝑖) 𝑚𝑜𝑑 𝑇 (1)

where ⊕ denotes the bit-wise XOR operation and 𝜋 are unique
large prime numbers. The feature vectors at each corner of the grid
are linearly interpolated to ensure continuous representation. The

Hardware Acceleration of Neural Graphics ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

interpolated feature vectors for all the levels are then concatenated
to generate the final encoded input to the multi-layer perceptron, as
shown in Figure 6. The number of training parameters are bounded
by 𝑇 × 𝐿 × 𝐹 . [17] has shown that for multi-resolution hashgrid en-
coding only using 16 levels and 2 features per array entry produces
high fidelity image frames for many neural graphics applications,
hence the number of trainable encoding parameters is set𝑇 × 16× 2
where T ranges from 214 𝑡𝑜 224 depending upon the neural graph-
ics application and the desired image fidelity. For multi-resolution
densegrid encoding 2-8 levels can be used to get high visual fidelity
outputs.

3 DOES NEURAL GRAPHICS NEED
HARDWARE SUPPORT?

To understand the performance characteristics of neural graphics,
we focus on the following four representative neural graphics ap-
plications that cover a relatively wide range of graphics tasks, as
presented by Müller et al. [19], including rendering, novel view
synthesis, 3D shape representation, simulation, path planning, 3D
modeling and image approximations:

1) Neural radiance and density fields (NeRF): The learning
objective during training phase is is to learn the 3D density and the
5D light field of a given scene from a few scene observations (im-
ages or video of the scene). The structure of the NeRF application is
shown in Figure 4. In NeRF, two fully-connected neural networks,
1) Density MLP and 2) Color MLP, are concatenated together where
density MLP learns the density information (𝜎) and the color MLP
learns the view dependent (𝑅𝐺𝐵) color information of the scene.
As the density information of a scene is view direction agnostic,
the encoded coordinates/positions (𝑥,𝑦, 𝑧) are used as input to the
density MLP. As the color information depends upon position as
well as view angle, the output of the density MLP along with the
encoded view directions (𝜃, 𝜙) are passed as input to the color MLP.
The output of the color MLP is a three dimensional vector contain-
ing the pixel color information (𝑅𝐺𝐵). The density information
is then concatenated with the pixel color information to get the
four dimensional vector containing the pixel color and the density
information (𝑅𝐺𝐵, 𝜎).

2) Neural signed distance functions (NSDF): In classical com-
puter graphics, signed distance functions (SDFs) are used to rep-
resent a 3D shape as the zero level-set of a function of position
x. In graphics, SDFs are commonly used in applications such as
simulation, path planning, 3D modeling, and video games [17]. In
neural approximations of SDFs, the MLP learns the mapping from
3D coordinates to the distance to a surface. The structure of the
NSDF application is shown in Figure 4. The inputs to the MLP are
encoded positions and the final output is the distance to the surface.

3) Gigapixel image approximation (GIA): A gigapixel image
is an ultra high definition digital image bitmap, usually made by
combining multiple detailed images into a single image. A Gigapixel
image has billions of pixels, which is much more than the capacity
of a normal professional camera. In GIA a neural network is used to
approximately learn the gigapixel image in its trainable parameters.

The learning objective of the MLP in GIA application is to learn
the mapping from 2D coordinates to RGB colors of the gigapixel
image. The structure of the GIA application is shown in Figure 4.
As the MLP learns the 2D image, there is no density information
and hence the view direction is also not required; the inputs to the
MLP are the encoded pixel positions and the outputs are the corre-
sponding pixel color (𝑅𝐺𝐵). This application can be considered as
an important benchmark to test neural network’s ability to learn
the high frequency details of visual data.

4) Neural volume renderer (NVR): This application is similar
to NeRF. The only difference is that, instead of learning the density
and the emission field, the network in neural volume rendering
learns the density and a reflectance field, which can be used to
simulate the light transport in the volume using path tracing. The
structure of the NVR application is shown in Figure 4. In NVR, two
fully-connected neural networks, 1) Density MLP and 2) Color MLP,
are concatenated together where the density MLP learns the den-
sity information (𝜎) and the color MLP learns the view dependent
(𝑅𝐺𝐵) color information of the bounded object. Similar to NeRF,
the encoded positions (𝑥,𝑦, 𝑧) are used as input to the density MLP
and the output of the density MLP along with the encoded view
directions (𝜃, 𝜙) are passed as input to the color MLP. The output is
a four dimensional vector containing the pixel color and the density
information (𝑅𝐺𝐵, 𝜎).

Each application can be implemented using a variety of input
encodings. As parametric encodings produce strictly better out-
put fidelity than frequency encodings [6, 10, 17, 19], we picked
parametric encoding for further exploration. In order to faithfully
represent the state of the art in parametric encodings, we explored
three different types of parametric encodings in this work – 1) Multi
resolution hashgrid encoding: Hash function is used to generate the
indices of the lookup tables while mapping the grid features to
the lookup tables entries. The number of resolution levels used is
16 [17, 18]. 2) Multi resolution densegrid encoding: 1:1 mapping is
used between grid features and the lookup tables entries. The num-
ber of resolution levels used is 8 [17, 18] 3) Low resolution densegrid
encoding: 1:1 mapping is used between grid features and the lookup
tables entries. The number of resolution levels used is 2 [17, 18]

We profiled the above four neural graphics applications with
the chosen three input encoding schemes using the open source
code published by Müller et al [18]. The parameters for all our
neural graphics applications and encoding schemes are shown in
Table 1. Both the input encoding algorithm and the multi-layer
perceptron are implemented as separate fused CUDA kernels [17–
19]. Unlike standard MLPs the fully-fused MLPs do not have any
explicit biases. Due to the smaller size of the fully-fused MLPs, the
intermediate activations and the partial sums can be stored on the
faster on-chip memory, reducing the number of global memory
accesses. A python based wrapper generates the inputs and dis-
plays the final rendered frame. We run the applications on Nvidia’s
RTX3090 using CUDA version 11.7 and report the total runtime of
the applications.

Our results (Figure 5) show that, on a modern desktop class GPU
(RTX3090), for multi resolution hashgrid encoding, rendering ∼ 2𝑀
pixels (1920 × 1080 frame) takes 231𝑚𝑠𝑒𝑐 , 27.87𝑚𝑠𝑒𝑐 , 2.12𝑚𝑠𝑒𝑐 and

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Trovato and Tobin, et al.

6.32𝑚𝑠𝑒𝑐 for NeRF, NSDF, GIA and NVR respectively. This is un-
acceptable for real-time applications. For instance, if we want to
render 4k frames at 60FPS only one of our neural graphics applica-
tions (GIA) is able to meet that target, there is the performance gap
of 55.50×, 6.68×, and 1.51× for NeRF, NSDF and NVR respectively.

In order to understand the performance bottlenecks of neural
graphics applications, we perform kernel level performance break-
down analysis. Figure 5 shows that input encoding and multi-layer
perceptron are the two most expensive kernels in all neural graph-
ics applications. For multi resolution hashgrid encoding, on average
across all neural graphics applications, 40.24% of the total number of
cycles are consumed by the input encoding kernel and 32.12% cycles
are consumed by themulti-layer perceptron kernel. On average, this
amounts to 72.37% of application time. For multi resolution denseg-
rid encoding, on average across all neural graphics applications,
24.63% of the total number of cycles are consumed by the input
encoding kernel and 35.37% cycles are consumed by the multi-layer
perceptron kernel. On average, this amounts to 60.0% of application
time. For low resolution densegrid encoding, on average across all
neural graphics applications, 24.15% of the total number of cycles
are consumed by the input encoding kernel and 35.37% cycles are
consumed by the multi-layer perceptron kernel. On average, this
amounts to 59.96% of application time. This data motivates the need
to accelerate the input encoding and multi-layer perceptron kernels.
In next section, we will provide a further breakdown of the time
spent in the input encoding and the multi-layer perceptron kernels
to understand their performance bottlenecks.

4 UNDERSTANDING PERFORMANCE OF
NEURAL GRAPHICS APPLICATIONS

We performed further analysis (using Nvidia’s nsight compute) to
understand the performance bottlenecks in the input encoding and
multi-layer perceptron kernels. Figure 8 shows the operation level
breakdown of the of input encoding kernels for different input
encoding types. Five most expensive operations in terms of number
of cycles spent are labeled in the Figure 8. As explained in Section 2,
the grid lookups are the major building block of the input encoding
algorithms; our analysis also shows that the grid lookups take
significant amount of cycles across all three input encoding types.

The percentage utilization of the GPU compute and memory
resources, for the input encoding kernel is presented in Table 2. On
average, across all encoding kernel calls, the memory utilization of
the GPU is higher than compute utilization. This is because input
encoding is a memory intensive workload that requires performing
lookup operations for mapping inputs to learned features even as
the lookup tables for all the resolution levels do not entirely fit
on the L2 cache of RTX3090. The memory wait time to resolve
the cache misses also adds to the overall cycles. Our analysis also
shows that the integer mapped modulo operation is one of the
most expensive operations for all three input encoding types. This
is because the modulo operation gets mapped to the less efficient
general integer modulo operation instead of using more efficient
bitwise operations which account for the fact that hash map sizes
are always powers of two.

As multi resolution densegrid and low resolution densegrid have
one-on-one mapping of grid indices, the hash function is not called

Table 1: The parameters of the four neural graphics applications
for different input encoding schemes.

Application Parameters

NeRF multi res. hashgrid
GridEncoding: Nmin=16 b=1.51572 F=2 T=2^19 L=16

Density model: 3–[HashGrid]–>32–[FullyFusedMLP(neurons=64;layers=3)]–>1
Color model: 3–[Composite]–>16+16–[FullyFusedMLP(neurons=64;layers=4)]–>3

NeRF multi res. densegrid
GridEncoding: Nmin=16 b=1.405 F=2 T=2^19 L=8

Density model: 3–[DenseGrid]–>16–[FullyFusedMLP(neurons=64;layers=3)]–>1
Color model: 3–[Composite]–>16+16–[FullyFusedMLP(neurons=64;layers=4)]–>3

NeRF low res. densegrid
GridEncoding: Nmin=128 b=1 F=8 T=2^19 L=2

Density model: 3–[TiledGrid]–>16–[FullyFusedMLP(neurons=64;layers=3)]–>1
Color model: 3–[Composite]–>16+16–[FullyFusedMLP(neurons=64;layers=4)]–>3

NSDF multi res. hashgrid GridEncoding: Nmin=16 b=1.38191 F=2 T=2^19 L=16
Model: 3–[HashGrid]–>32–[FullyFusedMLP(neurons=64;layers=4)]–>1

NSDF multi res. densegrid GridEncoding: Nmin=16 b=1.405 F=2 T=2^19 L=8
Model: 3–[DenseGrid]–>16–[FullyFusedMLP(neurons=64;layers=4)]–>1

NSDF low res. densegrid GridEncoding: Nmin=128 b=1 F=8 T=2^19 L=2
Model: 3–[TiledGrid]–>16–[FullyFusedMLP(neurons=64;layers=4)]–>1

NVR multi res. hashgrid GridEncoding: Nmin=16 b=1.275 F=2 T=2^19 L=16
Model: 3–[HashGrid]–>32–[FullyFusedMLP(neurons=64;layers=4)]–>4

NVR multi res. densegrid GridEncoding: Nmin=16 b=1.405 F=2 T=2^19 L=8
Model: 3–[DenseGrid]–>16–[FullyFusedMLP(neurons=64;layers=4)]–>4

NVR low res. densegrid GridEncoding: Nmin=128 b=1 F=8 T=2^19 L=2
Model: 3–[TiledGrid]–>16–[FullyFusedMLP(neurons=64;layers=4)]–>4

GIA multi res. hashgrid GridEncoding: Nmin=16 b=1.25992 F=2 T=2^24 L=16
Model: 2–[HashGrid]–>32–[FullyFusedMLP(neurons=64;layers=4)]–>3

GIA multi res. densegrid GridEncoding: Nmin=16 b=1.405 F=2 T=2^24 L=8
Model: 2–[DenseGrid]–>16–[FullyFusedMLP(neurons=64;layers=4)]–>3

GIA low res. densegrid GridEncoding: Nmin=128 b=1 F=8 T=2^24 L=2
Model: 2–[TiledGrid]–>16–[FullyFusedMLP(neurons=64;layers=4)]–>3

for these input encoding types and hence the breakdown shows
zero cycles for the hash function. However, the hash function con-
sumes significant number of cycles for multi resolution hashgrid .
This is because the hash function cannot efficiently utilize the ALU
due to the stalls caused by waiting on the long scoreboard to re-
solve the global memory requests. As shown in the input encoding
breakdown (Figure 8), other relatively simple compute operations
also consume significant number of cycles because they have to
wait for the long scoreboard to resolve the global memory requests
corresponding to the grid lookups.

Table 2 also presents the percentage utilization of the GPU com-
pute and memory resources for the MLP kernel. Our results show
that for MLP kernels as well, the memory utilization is higher than
compute utilization. This is because, for a constant batch size, the
compute cost of the fully connected networks scales quadratically
with the width of the network (Compute Cost:𝑂 (𝑀2)) whereas the
memory traffic scales linearly (Memory Cost: 𝑂 (𝑀)). For relatively
big MLPs with a large number of neurons, the quadratic compute
cost quickly becomes the bottleneck and further optimizing mem-
ory traffic has little to no performance benefits because the cost
would be overshadowed by the quadratic compute requirements.
However, all our neural graphics applications have tiny MLPs, with
only 2-4 hidden layers and 64 hidden neurons per layer (Table 1).
In smaller MLPs, the compute cost and the linear memory traffic
become asymptotically comparable and hence the memory traffic
cost starts to matter. Moreover, the GPUs and the modern proces-
sors in general usually have larger computational throughput than
memory bandwidth, which means that, for small number of neu-
rons, the memory cost dominates.

Hardware Acceleration of Neural Graphics ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

(a) (b) (c)

Figure 5: Kernel level performance breakdown analysis of neural graphics applications: The number of cycles consumed by the different
kernels of the neural graphics applications (as percentage of total application cycles). (a)Multi resolution hashgrid encoding, (b)Multi resolution
densegrid encoding, (c) Low resolution densegrid encoding.

Figure 6: Illustration ofMulti resolution grid encoding.

Figure 7: Scheduling of a typical neural graphics application on
GPU.

5 NEURAL FIELDS PROCESSOR: AN
ARCHITECTURE FOR NEURAL GRAPHICS

Since our profiling motivates the need to accelerate the input encod-
ing and multi-layer perceptron kernels, we design an architecture -
a neural fields processor (Figure 9) - to accelerate the input encod-
ing and multi-layer perceptron kernels in hardware using separate
hardware engines for the two. To accelerate input encoding kernel,
our kernel level analysis (Section 4) suggests providing hardware
support for the grid lookups and the dataflow of the input encoding.
Moreover, in neural graphics applications, the outputs of the input
encoding kernel are always consumed by the multi-layer percep-
tron kernel (Figure 4) In Müller et al’s GPU implementation of these
applications [17, 18], the input encoding kernel writes outputs to
device memory and the multi-layer perceptron kernel fetches that
data again for further processing (Figure 7). This leads to unneces-
sary memory traffic and waste of energy for DRAM accesses that

Table 2:Thepercentage utilization of theGPU compute andmemory
resources, for the input encoding and the MLP kernels for all four
neural graphics applications and for different input encodings.

App.-Kernel Grid Size/Block Size
Comp. Util.
per kernel

call

Mem. Util.
per kernel

call

Kernel
Calls

Comp. Util.
avg. across
application

Mem. Util.
avg. across
application

NeRF multi res. hashgrid (3853;16;1)/(512;1;1) 61.73 72.85 59 40.63 72.02
NeRF MLP (3853;16;1)/(512;1;1) 34.3 65.2 118 33.36 63.07

NSDF multi res. hashgrid (1823;16;1)/(512;1;1) 73.08 43.54 256 15.97 30.8
NSDF MLP (1823;16;1)/(512;1;1) 38.13 71.74 256 9.76 18.28

NVR multi res. hashgrid (403;16;1)/(512;1;1) 52.5 59.03 48 18.67 30.36
NVR MLP (403;16;1)/(512;1;1) 36.51 67.01 48 11.51 21.05

GIA multi res. hashgrid (4050;16;1)/(512;1;1) 82.87 62.23 1 82.87 62.23
GIA MLP (4050;16;1)/(512;1;1) 39.1 72.22 1 39.1 72.22

NeRF multi res. densegrid (3966;8;1)/(512;1;1) 71.39 91.81 45 57.37 72.31
NeRF MLP (3966;8;1)/(512;1;1) 39.53 68.4 90 34.51 62.31

NSDF multi res. densegrid (1823;8;1)/(512;1;1) 76.1 48.25 244 18.38 21.28
NSDF MLP (1823;8;1)/(512;1;1) 41.66 73.49 244 11.06 19.41

NVR multi res. densegrid (403;8;1)/(512;1;1) 57.38 56.8 48 17.41 22.43
NVR MLP (403;8;1)/(512;1;1) 39.83 67.67 48 12.17 20.59

GIA multi res. densegrid (4050;8;1)/(512;1;1) 78.53 65.83 1 78.53 65.83
GIA MLP (4050;8;1)/(512;1;1) 42.89 73.07 1 42.89 73.07

NeRF low res. densegrid (3980;2;1)/(512;1;1) 53.83 49.74 43 31.17 59.57
NeRF MLP (3980;2;1)/(512;1;1) 39.41 68.17 86 35.5 64.1

NSDF low res. densegrid (1823;2;1)/(512;1;1) 55.88 45.52 260 7.21 20.07
NSDF MLP (1823;2;1)/(512;1;1) 41.37 72.98 260 10.34 18.14

NVR low res. densegrid (403;2;1)/(512;1;1) 22.71 69.16 48 6.29 22.71
NVR MLP (403;2;1)/(512;1;1) 39.2 66.58 48 12.11 20.48

GIA low res. densegrid (4050;2;1)/(512;1;1) 66.15 59.12 1 66.15 59.12
GIA MLP (4050;2;1)/(512;1;1) 42.87 73.02 1 42.87 73.02

can potentially be avoided. This opportunity can be exploited in the
neural fields processor hardware by fusing the input encoding and
multi-layer perceptron engines in such a way that the input encod-
ing engine directly writes the outputs to the input memory of the
multi-layer perceptron engine.

Figure 9-a presents the architecture of the input encoding hard-
ware engine. Each input encoding hardware engine has a dedicated
on-chip SRAM (grid_sram) to cache the lookup table for one reso-
lution level. The size of the grid_sram (1MB per input encoding en-
gine) is chosen such that the entire lookup table for one resolution
level fits on the on-chip SRAM, and the off-chip memory access
penalty could be avoided for grid lookups. The lookup table for one
resolution level is cached once on the dedicated grid_sram of one
input encoding engine and then lookups are performed for all the
inputs for the entire frame. Our hardware architecture has 16 input
encoding engines to match the maximum number of resolution
levels of the neural graphics applications. As the multi resolution
hashgrid input encoding has 16 resolution levels, each of the 16

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Trovato and Tobin, et al.

Figure 8: The operation level breakdown of the of input encoding
kernels for different input encoding types. The five most expensive
operations in terms of number of cycles spent. MRHG : multi res-
olution hashgrid , MRDG :multi resolution densegrid , LRDG : low
resolution densegrid .

input encoding engines caches the lookup table corresponding to
one resolution level and then performs the input encoding for all
the resolution levels in parallel. As multi resolution densegrid input
encoding has 8 resolution levels, two inputs can be processed in
parallel. Similarly, as low resolution densegrid input encoding has
2 resolution levels, the input encoding IP can process 8 inputs in
parallel.

The normalized input coordinates are pre-fetched into the input
FIFO (Figure 9-a). The grid_scale module calculates the scale of the
grid from the base-resolution of the grid and the resolution level
being processed. The pos_fract module is responsible for converting
the normalized input coordinates to the absolute coordinates. It
multiplies the normalized coordinates with grid scale to compute
the absolute coordinates, which are then passed to the grid_index
module for the index calculation. The grid_index module is respon-
sible for calculating the final indices for the lookup operations. The
grid_index module can be configured to either hash in the indices
for the multi resolution hashgrid encoding or compute the indices
without the hashing function for the multi resolution densegrid and
low resolution densegrid encoding types. The algorithm to compute
the indices for the lookup operation takes the modulo of the indices
with the hash-map size as an intermediate operation before the
final indices could be calculated. We observe that the hash-map
size is always power of two for all our neural graphics applica-
tions. We exploit this optimization opportunity in hardware and
approximate the modulo operation with shift operation in input
encoding engine. The final outputs of the grid_index modules are
actual indices that are directly used to perform the feature lookups

from the grid_sram. The interpol_weights module computes the
interpolation weights that are then multiplied with the features
to compute the final features that are fed to the multi-layer per-
ceptron engine. As each input encoding engine calculates features
for one resolution level, the outputs of the input encoding engines
are concatenated together to get the final input vector for the MLP
engine.

Since MLPs in neural graphics applications are small (2-4 hidden
layers, 64 neurons in each hidden layer), our MLP engine has a
64 × 64 grid of MAC units that computes one layer of the multi-
layer perceptron at a time. As the size of the hidden layer is rela-
tively small, a dedicated small on-chip SRAM is used to store the
intermediate features of the hidden layers. Keeping the interme-
diate features on-chip removes the off-chip memory accesses for
storing/fetching the intermediate features and improves the perfor-
mance by 1OOM [19].

Figure 10-a shows the interaction of the neural fields proces-
sor with the GPU. A set of N NFPs are organized as a neural graph-
ics processing cluster (NGPC) connected to the shared L2 cache.
Figure 10-b and 10-c show the programming model of the NGPC.
The programming model for the NGPC involves the GPU command
buffer [8] configuring the NGPC and scheduling the input encod-
ing and the multi-layer perceptron kernels on the NGPC. The rest of
the kernels are scheduled just as conventional CUDA kernels on the
streaming multiprocessors. The outputs of the NGPC are written
back to the GPU memory, and are read by the streaming multipro-
cessors, which then compute the rest of the kernels. The inputs
are divided into batches. While the GPU is processing the rest of
the neural graphics application kernels for the Nth batch of inputs,
the N+1st batch is scheduled on the NGPC to compute the input
encoding and MLP kernels in parallel, as shown in Figure 10-b.

6 EVALUATION AND RESULTS
We provide an emulator to evaluate the performance of the neural
graphics applications on our architecture. The block diagram of the
emulator is in Figure 11. The inputs to the emulator are 1) The neural
graphics application parameters such as the input encoding type,
the grid resolution levels, the input encoding parameters, the multi-
layer perceptron structure 2) the architecture parameters such as
the number of NFP units in the NGPC, operating frequency of the
NGPC, the critical path delay of the architecture, the memory access
time for different on-chip SRAM blocks of the NFP , the memory
access time for device memory, the area and power estimates of
the NGPC 3) the kernel level breakdown of the performance of the
neural graphics application on the GPU and 4) the frame resolution.
The outputs of the emulator are 1) the overall performance of the
neural graphics application with the input encoding and the multi-
layer perceptron scheduled on NGPC and the rest of the kernels
scheduled on the GPU. 2) the overall area and power of the NGPC.

We evaluated the performance of the neural graphics applica-
tions on our proposed architecture for the scaling factor of 8, 16, 32
and 64, where NGPC-8 has 8 NFP unit, NGPC-16 has 16 NFP units
and so on. Figure 12a presents the overall performance of the neural
graphics applications with multi resolution hashgrid encoding on
the proposed architecture. Our results show that when we have

Hardware Acceleration of Neural Graphics ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

Figure 9: Architecture of the Neural Fields Processor (NFP)

Figure 10: a) Interaction of the NGPC with GPU. b) Programming model for NGPC. c) Pseudocode for programming NGPC.

only 8 NFP units in the NGPC, on average across all four neural
graphics applications, we get overall 12.94× performance bene-
fits compared to the GPU baseline. When we scale the number of
NFP units in an NGPC to 16, 32 and 64, the performance benefits av-
eraged across the four representative neural graphics applications
increase to 20.85×, 33.73× and 39.04× respectively.

Figure 12b presents the overall performance of the neural graph-
ics applications with multi resolution densegrid encoding. Our
results show that when we have only 8 NFP units in NGPC, on
average across all four neural graphics applications, we get overall
9.05× performance benefits compared to the GPU baseline. When
we scale the number of NFP units in an NGPC to 16, 32 and 64,
the performance benefits averaged across the four representative
neural graphics applications increase to 14.22×, 22.57× and 26.22×
respectively.

Figure 12c presents the overall performance of the neural graph-
ics applications with low resolution densegrid encoding. Our results
show that when we have only 8 NFP units in NGPC, on average
across all four neural graphics applications, we get overall 9.37×
performance benefits compared to the GPU baseline. When we
scale the number of NFP units in an NGPC to 16, 32 and 64, the per-
formance benefits averaged across the four representative neural
graphics applications increase to 14.66×, 22.97× and 26.4× respec-
tively.

Our results also show that NeRF performance plateaus for NGPC-
64. I.e., increasing the number of NFP beyond 64 does not improve
the overall performance of the application. This is because the
time consumed by the non- input encoding and multi-layer per-
ceptron kernels becomes the performance bottleneck. Similarly,

for NSDF , NVR and GIA the performance plateaus for NGPC-32,
NGPC-16 and NGPC-64 respectively.

In order to better understand where the application level ben-
efits are coming from, we also compare the performance of the
input encoding and the multi-layer perceptron kernels individu-
ally, with their GPU based implementations. Figure 13 presents the
performance improvement of the input encoding kernel and the
multi-layer perceptron kernels individually, on our architecture, for
scaling factors of 8, 16, 32 and 64. Our results show that for multi
resolution hashgrid , on average across four neural graphics appli-
cations, the neural graphics processing cluster -64 has performance
improvement of 246× and 1232× for the input encoding kernel and
the multi-layer perceptron kernel, respectively. For multi resolution
densegrid , neural graphics processing cluster -64 has performance
improvement of 379× and 1070× for the input encoding kernel
and the multi-layer perceptron kernel, respectively. For low reso-
lution densegrid , the neural graphics processing cluster -64 has
performance improvement of 2353× and 1451× for the input en-
coding kernel and the multi-layer perceptron kernel, respectively.

In Figure 14, we present the number of pixels that can be rendered
for a given FPS target with and without neural graphics processing
cluster . Horizontal lines in the figure mark the number of pixels in
HD (1280 × 720), FHD (1920 × 1080), QHD/2k (2560 × 1440), Ultra
HD/4k (3820 × 2160), 5k (5120 × 2880) and 8k (7680 × 4320) frame
resolutions. The vertical bars show the number of pixels rendered
within the time budget of 1000/30 = 33.33ms, 1000/60 = 16.67ms,
1000/90 = 11.11ms and 1000/120 = 8.33ms corresponding to the FPS
targets of 30, 60, 90 and 120 FPS respectively. Our results show
that with multi resolution hashgrid encoding, NGPC enables the

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Trovato and Tobin, et al.

Table 3: The input/output bandwidth and the data access time for
our NGPC architecture.

App. Input BW (GB/s) Output BW (GB/s) Totoal BW (GB/s) Access time (ms)

NeRF 69.523 46.349 231.743 4.126
NSDF 34.761 34.761 69.523 1.238
GIA 34.761 34.761 69.523 1.238
NVR 34.761 34.761 69.523 1.238

rendering of 4k Ultra HD resolution frames at 30 FPS for NeRF and
8k Ultra HD resolution frames at 120 FPS for all our other neural
graphics applications.

For estimating the area and power overheads, we wrote RTL
for neural fields processor and synthesized it using Synopsys de-
sign compiler along with the Nangate 45nm open cell library. We
used CACTI to get the area and power estimates for the SRAM
blocks. Figure 15 shows the area and power of the different con-
figurations of NGPC normalized with respect to Nvidia’s RTX3090
area and power. In order to get iso-technode comparison, we scaled
the area and power of NGPC to 7nm using often-used scaling for-
mulas [31]. Our estimates show that NGPC-8 that has only one
NFP unit increases the die area of GPU by only ∼ 4.52% with the
power overhead of ∼ 2.75%. Similarly, NGPC-16, NGPC-32 and
NGPC-64 increase the GPU die area by ∼ 9.04%, ∼ 18.01% and
∼ 36.18% respectively and GPU power by ∼ 5.51%, ∼ 11.03% and
∼ 22.06% respectively.

Table 3 presents the input/output bandwidth and the data access
time for our NGPC architecture. Our estimates suggest that, for
60FPS, the bandwidth requirement for NGPC architecture is 231
GB/s for NeRF and 69 GB/s for all other neural graphics applica-
tions. The memory bandwidth of Nvidia RTX 3090 is 936.2 GB/s [1].
Hence, for 60FPS, the IO bandwidth of the accelerator is ∼ 24%
of the GPU memory bandwidth for NeRF and only ∼ 7% of the
GPU memory bandwidth for NSDF, NVR and GIA. Moreover, the
massively parallel nature of the workload and the high memory
bandwidth of the GPU compared to the IO bandwidth of the accel-
erator keeps the encoding engines busy with high utilization. This
translates to data access time of 4.12ms for NeRF and 1.23ms for all
other neural graphics applications.

In order to get confidence in our evaluation methodology and the
reported speedup numbers, we performed a sanity check against
Amdahl’s law and presented our analysis in figures 12a, 12b and 12c.
Horizontal lines in the figures 12a, 12b and 12c show the peak
speedup bounded by Amdahl’s law and the vertical bars show the
reported speedup from our emulator. Our analysis shows that the
reported speedup is always under the Amdahl-driven analytical
bounding of speedup. We also modeled the performance of our MLP
engine using popular open-source DNN-architecture-modeling
frameworks Timeloop [23] and Accelergy [41]. In figure 13 we
also present the performance benefits of the MLP engine modeled
with the timeloop and accelergy. Our analysis shows that the per-
formance benefits reported by our emulator are within ∼ 7% of the
performance benefits modeled with the timeloop and accelergy.

7 SUMMARY AND CONCLUSION
Neural graphics promises a fast, deterministic time replacement
for traditional rendering algorithms. In this paper, we address the
question: does neural graphics need hardware support? We stud-
ied four representative neural graphics applications (NeRF, NSDF,

Figure 11: Block diagram of the emulator.

NVR, and GIA) and showed that, if we want to render 4k resolution
frames at 60FPS, there is the gap of ∼ 1.51× to 55.50× between
the desired performance and the state of the art. For AR and VR
applications, there is a larger gap of ∼ 2-4OOM between the de-
sired performance and target power. Through in depth analysis,
we identified that the input encoding and the multi-layer percep-
tron kernels are the performance bottlenecks consuming 72.37%,
60.0% and 59.96% of application time for multi resolution hash-
grid encoding, multi resolution densegrid encoding and low resolution
densegrid encoding respectively. Based on the compute and memory
access characteristics of the input encoding and the multi-layer per-
ceptron kernels, we proposed neural graphics processing cluster –
a scalable hardware architecture that directly accelerates the input
encoding and multi-layer perceptron kernels through dedicated
engines and supports a wide range of neural graphics applications.
To achieve good overall application level performance improve-
ments, we also accelerate the rest of the kernels by fusion into a
single kernel, leading to a ∼ 9.94× speedup compared to previous
optimized implementations [17] which is sufficient to remove this
performance bottleneck. Our results show that, NGPC gives up to
58.36× end-to-end application-level performance improvement. For
multi resolution hashgrid encoding on average across the four neural
graphics applications, the performance benefits of our architecture
are 12.94×, 20.85×, 33.73× and 39.04× for the scaling factor of 8,
16, 32 and 64, respectively. For multi resolution densegrid encod-
ing on average across the four neural graphics applications, the
performance benefits of our architecture are 9.05×, 14.22×, 22.57×
and 26.22× for the scaling factor of 8, 16, 32 and 64, respectively.
Similarly, for low resolution densegrid encoding on average across
the four neural graphics applications, the performance benefits of
our architecture are 9.37×, 14.66×, 22.97× and 26.4× for the scaling
factor of 8, 16, 32 and 64, respectively. Our results show that with
multi resolution hashgrid encoding, NGPC enables the rendering
of 4k Ultra HD resolution frames at 30 FPS for NeRF and 8k Ultra
HD resolution frames at 120 FPS for all our other neural graphics
applications.

8 ACKNOWLEDGEMENTS
We thank Selvakumar Panneer (Intel) for multiple discussion about
NeRF and neural graphics that helped conceive this project. We
thank Anton Kaplanyan, Rama Harihara, Nilesh Jain, Ravi Iyer and
Maxim Kazakov (from Intel) for multiple discussions about neural

Hardware Acceleration of Neural Graphics ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

(a) (b) (c)

Figure 12: The performance of the neural graphics applications on our proposed architecture for the scaling factor of 8, 16,
32 and 64. NGPC-8 has 8 NFP units, NGPC-16 has 16 NFP units and so on. (a) Multi resolution hashgrid encoding, (b) Multi
resolution densegrid encoding, (c) Low resolution densegrid encoding.

(a) (b) (c)

Figure 13: The performance improvement of the input encoding kernels and the multi-layer perceptron kernels individually, on our
architecture, for the scaling factors of 8, 16, 32 and 64. For all four neural graphics applications and different input encoding types. (a)Multi
resolution hashgrid encoding, (b) Multi resolution densegrid encoding, (c) Low resolution densegrid encoding, where dotted lines labeled as
mlp_imp_TA are the performance improvements of MLP engine modeled with timeloop and accelergy.

(a) (b) (c)

Figure 14: The number of pixels that can be rendered for a given FPS target with and without neural graphics processing cluster. (a)Multi
resolution hashgrid encoding, (b)Multi resolution densegrid encoding, (c) Low resolution densegrid encoding.

Figure 15: The area and Power of neural graphics processing cluster ,
normalized with respect to the area and power of Nvidia RTX 3090
die area and power.

graphics. We also thank Vikram Sharma Mailthody, the anonymous
reviewers as well as the members of the Passat group for their
feedback.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Trovato and Tobin, et al.

REFERENCES
[1] 2022. NVIDIA GeForce RTX 3090. https://www.techpowerup.com/gpu-specs/

geforce-rtx-3090.c3622
[2] 2022. Vulkan Tutorial - Graphics Pipeline Basics. https://vulkan-tutorial.com/

Drawing_a_triangle/Graphics_pipeline_basics/Introduction
[3] Md Zahangir Alom, Tarek M Taha, Christopher Yakopcic, Stefan Westberg, Pa-

heding Sidike, Mst Shamima Nasrin, Brian C Van Esesn, Abdul A S Awwal, and
Vijayan K Asari. 2018. The history began from alexnet: A comprehensive survey
on deep learning approaches. arXiv preprint arXiv:1803.01164 (2018).

[4] Shai Avidan and Amnon Shashua. 1997. Novel view synthesis in tensor space. In
Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. IEEE, 1034–1040.

[5] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo
Martin-Brualla, and Pratul P Srinivasan. 2021. Mip-nerf: A multiscale repre-
sentation for anti-aliasing neural radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 5855–5864.

[6] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven
Lovegrove, and Richard Newcombe. 2020. Deep local shapes: Learning local sdf
priors for detailed 3d reconstruction. In European Conference on Computer Vision.
Springer, 608–625.

[7] Robert A Drebin, Loren Carpenter, and Pat Hanrahan. 1988. Volume rendering.
ACM Siggraph Computer Graphics 22, 4 (1988), 65–74.

[8] Fabian Giesen. 2011. A trip through the Graphics Pipeline 2011. https://fgiesen.
wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/

[9] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed
Bennamoun. 2020. Deep learning for 3d point clouds: A survey. IEEE transactions
on pattern analysis and machine intelligence 43, 12 (2020), 4338–4364.

[10] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner,
Thomas Funkhouser, et al. 2020. Local implicit grid representations for 3d scenes.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 6001–6010.

[11] Barthold Lichtenbelt, Randy Crane, and Shaz Naqvi. 1998. Introduction to volume
rendering. Prentice-Hall, Inc.

[12] Stephen Robert Marschner. 1998. Inverse rendering for computer graphics. Cornell
University.

[13] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron,
Alexey Dosovitskiy, and Daniel Duckworth. 2021. Nerf in the wild: Neural
radiance fields for unconstrained photo collections. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 7210–7219.

[14] Michael Meißner, Jian Huang, Dirk Bartz, Klaus Mueller, and Roger Crawfis. 2000.
A practical evaluation of popular volume rendering algorithms. In Proceedings of
the 2000 IEEE symposium on Volume visualization. 81–90.

[15] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance
fields for view synthesis. Commun. ACM 65, 1 (2021), 99–106.

[16] Bert Moons, Bert De Brabandere, Luc Van Gool, and Marian Verhelst. 2016.
Energy-efficient convnets through approximate computing. In 2016 IEEE Winter
Conference on Applications of Computer Vision (WACV). IEEE, 1–8.

[17] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. In-
stant neural graphics primitives with a multiresolution hash encoding. ACM
Transactions on Graphics (ToG) 41, 4 (2022), 1–15.

[18] ThomasMüller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. NVlabs
- instant-ngp. https://github.com/NVlabs/instant-ngp.

[19] Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-
time neural radiance caching for path tracing. ACM Transactions on Graphics
(TOG) 40, 4 (2021), 1–16.

[20] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas Kurz, Joerg H Mueller,
Chakravarty R Alla Chaitanya, Anton Kaplanyan, and Markus Steinberger. 2021.
DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields
using Depth Oracle Networks. In Computer Graphics Forum, Vol. 40. Wiley Online
Library, 45–59.

[21] Kumud Nepal, Yueting Li, R Iris Bahar, and Sherief Reda. 2014. ABACUS: A
technique for automated behavioral synthesis of approximate computing circuits.
In 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 1–6.

[22] Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. 2021. Large steps in inverse
rendering of geometry. ACM Transactions on Graphics (TOG) 40, 6 (2021), 1–13.

[23] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W Keckler, and Joel Emer. 2019. Timeloop: A systematic approach to
dnn accelerator evaluation. In 2019 IEEE international symposium on performance
analysis of systems and software (ISPASS). IEEE, 304–315.

[24] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. 2019. Deepsdf: Learning continuous signed distance functions for
shape representation. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 165–174.

[25] Gustavo Patow and Xavier Pueyo. 2003. A survey of inverse rendering problems.
In Computer graphics forum, Vol. 22. Wiley Online Library, 663–687.

[26] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer.
2021. D-nerf: Neural radiance fields for dynamic scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10318–10327.

[27] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred
Hamprecht, Yoshua Bengio, and Aaron Courville. 2019. On the spectral bias
of neural networks. In International Conference on Machine Learning. PMLR,
5301–5310.

[28] Purushothaman Raja and Sivagurunathan Pugazhenthi. 2012. Optimal path
planning of mobile robots: A review. International journal of physical sciences 7,
9 (2012), 1314–1320.

[29] William T Reeves, David H Salesin, and Robert L Cook. 1987. Rendering an-
tialiased shadows with depth maps. In Proceedings of the 14th annual conference
on Computer graphics and interactive techniques. 283–291.

[30] Hans Fuhan Shi and Shahram Payandeh. 2008. GPU in haptic rendering of
deformable objects. In International Conference on Human Haptic Sensing and
Touch Enabled Computer Applications. Springer, 163–168.

[31] Aaron Stillmaker and Bevan Baas. 2017. Scaling equations for the accurate
prediction of CMOS device performance from 180 nm to 7 nm. Integration 58
(2017), 74–81.

[32] Rohan Tahir, Allah Bux Sargano, and Zulfiqar Habib. 2021. Voxel-based 3D object
reconstruction from single 2D image using variational autoencoders.Mathematics
9, 18 (2021), 2288.

[33] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin
Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng.
2020. Fourier features let networks learn high frequency functions in low dimen-
sional domains. Advances in Neural Information Processing Systems 33 (2020),
7537–7547.

[34] Yuk Ming Tang and Ho Lun Ho. 2020. 3D modeling and computer graphics
in virtual reality. In Mixed Reality and Three-Dimensional Computer Graphics.
IntechOpen.

[35] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann, Stephen Lombardi,
Kalyan Sunkavalli, RicardoMartin-Brualla, Tomas Simon, Jason Saragih, Matthias
Nießner, et al. 2020. State of the art on neural rendering. In Computer Graphics
Forum, Vol. 39. Wiley Online Library, 701–727.

[36] Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srinivasan, Edgar Tretschk,
W Yifan, Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen
Lombardi, et al. 2022. Advances in neural rendering. In Computer Graphics Forum,
Vol. 41. Wiley Online Library, 703–735.

[37] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang
Jiang. 2018. Pixel2mesh: Generating 3d mesh models from single rgb images. In
Proceedings of the European conference on computer vision (ECCV). 52–67.

[38] Kelly Ward, Florence Bertails, Tae-Yong Kim, Stephen R Marschner, Marie-Paule
Cani, and Ming C Lin. 2007. A survey on hair modeling: Styling, simulation, and
rendering. IEEE transactions on visualization and computer graphics 13, 2 (2007),
213–234.

[39] Lee Westover. 1989. Interactive volume rendering. In Proceedings of the 1989
Chapel Hill workshop on Volume visualization. 9–16.

[40] Craig M Wittenbrink. 1998. Survey of parallel volume rendering algorithms.
Hewlett Packard Laboratories.

[41] Yannan Nellie Wu, Joel S Emer, and Vivienne Sze. 2019. Accelergy: An
architecture-level energy estimation methodology for accelerator designs. In 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE,
1–8.

https://www.techpowerup.com/gpu-specs/geforce-rtx-3090.c3622
https://www.techpowerup.com/gpu-specs/geforce-rtx-3090.c3622
https://vulkan-tutorial.com/Drawing_a_triangle/Graphics_pipeline_basics/Introduction
https://vulkan-tutorial.com/Drawing_a_triangle/Graphics_pipeline_basics/Introduction
https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
https://github.com/NVlabs/instant-ngp

	Abstract
	1 Introduction
	2 Neural Graphics: An Overview
	2.1 Input Encoding

	3 Does Neural Graphics Need Hardware Support?
	4 Understanding Performance of Neural Graphics Applications
	5 Neural Fields Processor: An Architecture for Neural Graphics
	6 Evaluation and Results
	7 Summary and Conclusion
	8 Acknowledgements
	References

